login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A103529
Values of A102370 which are >= a new power of 2.
4
0, 3, 6, 15, 28, 61, 126, 251, 504, 1017, 2042, 4095, 8180, 16373, 32758, 65523, 131056, 262129, 524274, 1048567, 2097148, 4194285, 8388590, 16777195, 33554408, 67108841, 134217706, 268435439, 536870884, 1073741797, 2147483622
OFFSET
1,2
LINKS
David Applegate and N. J. A. Sloane, Table of n, a(n) for n = 1..62
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.
FORMULA
a(n) = 2^(n-1) - (n-1) + Sum_{ k >= 1, k == n-1 mod 2^k } 2^k.
a(n+1) = 2^n + A102371(n) for n>=1. a(n) = 2^n - A103530(n). - Philippe Deléham, Mar 30 2005
a(0)=0, a(1)=3, for n>1, a(n)= a(n-1) XOR (a(n-1)+n), where XOR is the bitwise exclusive-or operator. - Alex Ratushnyak, Apr 21 2012
EXAMPLE
The initial values of A102370 are 0*, 3*, 6*, 5, 4, 15*, 10, 9, 8, 11, 14, 13, 28*, 23, ... and the starred terms are those which exceed the next power of 2. Their indices (except for the zero term) are given by A000325.
PROG
(Python)
a=3
print(0, end=', ')
for i in range(2, 55):
print(a, end= ', ')
a ^= a+i
# Alex Ratushnyak, Apr 21 2012
CROSSREFS
Sequence in context: A300761 A069712 A076971 * A185378 A285563 A285543
KEYWORD
nonn,base
AUTHOR
STATUS
approved