OFFSET
1,12
COMMENTS
T(n,k) is the number of certain types of trees (see the Duke et al. reference) of height n and having k edges from the root to the first branch node (k edges if there are no branch nodes). Row sums yield A000278.
LINKS
W. Duke, Stephen J. Greenfield and Eugene R. Speer, Properties of a Quadratic Fibonacci Recurrence, J. Integer Sequences, 1998, #98.1.8.
FORMULA
T(n, k)=0 for k>n; T(n, n)=1; T(n, 1)=0 for n>=2; T(n, k)=A000278(n-k)^2 for 2<=k<=n-1.
EXAMPLE
P[3,t]=t^2+t^3; therefore T(3,1)=0, T(3,2)=1, T(3,3)=1.
Triangle begins:
1;
0,1;
0,1,1;
0,1,1,1;
0,4,1,1,1;
0,9,4,1,1,1;
0,49,9,4,1,1,1;
MAPLE
P[1]:=t:P[2]:=t^2:for n from 3 to 12 do P[n]:=sort(expand(t*P[n-1]+t^2*subs(t=1, P[n-2])^2)) od: for n from 1 to 12 do seq(coeff(P[n], t^k), k=1..n) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Mar 21 2005
STATUS
approved