login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Multiplicative suborder of 11 (mod n) = sord(11, n).
1

%I #28 Mar 05 2023 12:40:20

%S 0,0,1,1,1,1,1,3,2,3,1,0,1,6,3,2,4,8,3,3,2,6,0,11,2,5,6,9,6,14,2,15,8,

%T 0,8,3,3,3,3,12,2,20,6,7,0,6,11,23,4,21,5,16,12,13,9,0,6,6,14,29,2,2,

%U 15,6,16,12,0,33,16,11,3,35,6,36,3,10,6,0,12,39,4,27,20,41,6,16,7,28,0,11,6

%N Multiplicative suborder of 11 (mod n) = sord(11, n).

%C a(n) is minimum e for which 11^e == +-1 (mod n), or zero if no such e exists.

%C For n > 2, a(n) <= (n-1)/2. - _Robert Israel_, Mar 20 2020

%D H. Cohen, Course in Computational Algebraic Number Theory, Springer, 1993, p. 25, Algorithm 1.4.3.

%H Robert Israel, <a href="/A103497/b103497.txt">Table of n, a(n) for n = 0..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MultiplicativeOrder.html">Multiplicative Order</a>.

%H S. Wolfram, <a href="https://web.archive.org/web/20120925202826/http://www.stephenwolfram.com/publications/articles/ca/84-properties/9/text.html">Algebraic Properties of Cellular Automata (1984)</a>, Appendix B.

%p f:= proc(n) local x;

%p if n mod 11 = 0 then return 0 fi;

%p x:= numtheory:-mlog(-1,11,n);

%p if x <> FAIL then x else numtheory:-order(11,n) fi

%p end proc:

%p f(1):= 0:

%p map(f, [$0..100]); # _Robert Israel_, Mar 20 2020

%t Suborder[k_, n_] := If[n > 1 && GCD[k, n] == 1, Min[MultiplicativeOrder[k, n, {-1, 1}]], 0];

%t a[n_] := Suborder[11, n];

%t a /@ Range[0, 100] (* _Jean-François Alcover_, Mar 21 2020, after _T. D. Noe_ in A003558 *)

%K easy,nonn,look

%O 0,8

%A _Harry J. Smith_, Feb 08 2005