OFFSET
0,1
COMMENTS
The binary operation must be commutative, idempotent and non-associative. - David Wasserman, Apr 15 2008
FORMULA
a(n)=a(n-1)(a(0)+a(1)+...+a(n-2))+C(a(n-1), 2).
EXAMPLE
The word "product" means a binary operation * . For example, using * = average, given by a*b=(a+b)/2, generation G(0) consisting of 0 and 1 yields successive generations:
G(1): 0*1=1/2, whence a(1)=1
G(2): 1/4=0*(1/2), 3/4=1*(1/2), whence a(2)=2
G(3): 1/8=0*(1/4), 5/8=1*(1/4), 3/8=(1/2)*(1/4), 3/8=0*(3/4),
7/8=1*(3/4), 5/8=(1/2)*(3/4), 1/2=(1/4)*(3/4), whence a(3)=7.
To summarize, for n>=3, G(n) consists of a(n-1)*(a(0)+a(1)+...+a(n-2)) products a*b where a runs through G(0), G(1),...,G(n-2) and b runs through G(n-1), together with C(a(n-1),2) products a*b where a and b run through G(n-1).
PROG
(PARI) print1("2, "); a=2; s=0; for(n=1, 12, aa=a*s+binomial(a, 2); print1(aa", "); s+=a; a=aa) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 04 2005
EXTENSIONS
One more term from David Wasserman, Apr 15 2008
One more term from Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
STATUS
approved