login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: n-th row = unsigned coefficients of the characteristic polynomials of an n X n matrix with 2's on the diagonal and 1's elsewhere.
9

%I #39 Oct 19 2023 12:52:15

%S 1,1,2,1,4,3,1,6,9,4,1,8,18,16,5,1,10,30,40,25,6,1,12,45,80,75,36,7,1,

%T 14,63,140,175,126,49,8,1,16,84,224,350,336,196,64,9,1,18,108,336,630,

%U 756,588,288,81,10,1,20,135,480,1050,1512,1470,960,405,100,11,1,22,165

%N Triangle read by rows: n-th row = unsigned coefficients of the characteristic polynomials of an n X n matrix with 2's on the diagonal and 1's elsewhere.

%C This triangle * [1/1, 1/2, 1/3, ...] = (1, 2, 4, 8, 16, 32, ...). - _Gary W. Adamson_, Nov 15 2007

%C Triangle read by rows: T(n,k) = (k+1)*binomial(n,k), 0 <= k <= n. - _Philippe Deléham_, Apr 20 2009

%H Vincenzo Librandi, <a href="/A103406/b103406.txt">Rows n = 0..100, flattened</a>

%F Binomial transform of A127648. - _Gary W. Adamson_, Nov 15 2007

%F Equals A128064 * A007318. - _Gary W. Adamson_, Jan 03 2008

%F T(n,k) = (k+1)*A007318(n,k). - _Philippe Deléham_, Apr 20 2009

%F T(n,k) = Sum_{i=1..k+1} i*binomial(k+1,i)*binomial(n-k,k+1-i). - _Mircea Merca_, Apr 11 2012

%F O.g.f.: (1 - y)/(1 - y - x*y)^2 = 1 + (1 + 2*x)*y + (1 + 4*x + 3*x*2)*y^2 + .... - _Peter Bala_, Oct 18 2023

%e Characteristic polynomial of 3 X 3 matrix [2 1 1 / 1 2 1 / 1 1 2] = x^3 - 6x^2 + 9x - 4.

%e The first few characteristic polynomials are:

%e 1

%e x - 2

%e x^2 - 4x + 3

%e x^3 - 6x^2 + 9x - 4

%e x^4 - 8x^3 + 18x^2 - 16x + 5

%p with(linalg): printf(`%d,`,1): for n from 1 to 15 do mymat:=array(1..n, 1..n): for i from 1 to n do for j from 1 to n do if i=j then mymat[i,j]:=2 else mymat[i,j]:=1 fi: od: od: temp:=charpoly(mymat,x): for j from n to 0 by -1 do printf(`%d,`,abs(coeff(temp, x, j))) od: od: # _James A. Sellers_, Apr 22 2005

%p p := (n,x) -> (x+1)^(n-1)+(x+1)^(n-2)*(n-1);

%p seq(seq(coeff(p(n,x),x,n-j-1),j=0..n-1),n=1..11); # _Peter Luschny_, Feb 25 2014

%t t[n_, k_] := (k+1)*Binomial[n, k]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Oct 09 2012, after _Philippe Deléham_ *)

%Y Row sums = A001792: 1, 3, 8, 20, 48, 112, ...

%Y See A103283 for the mirror image.

%Y Cf. A093375, A127648, A128064.

%K nonn,tabl

%O 0,3

%A _Gary W. Adamson_, Feb 04 2005

%E More terms from _James A. Sellers_, Apr 22 2005