Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Sep 01 2024 00:14:20
%S 1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,5,7,8,8,8,8,
%T 8,8,8,9,12,15,16,16,16,16,16,16,17,21,27,31,32,32,32,32,32,33,38,48,
%U 58,63,64,64,64,64,65,71,86,106,121,127,128,128,128,129,136,157,192,227
%N a(1)=a(2)=...=a(10)=1, a(n)=a(n-9)+a(n-10).
%C k=9 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1), k=3 case is A079398 (offset so as to begin 1,1,1,1), k=4 case is A103372, k=5 case is A103373, k=6 case is A103374, k=7 case is A103375, k=8 case is A103376, k=10 case is A103378 and k=11 case is A103379. The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1)= 1 and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]). For this k=9 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the characteristic polynomial: x^10 - x - 1 = 0. This is the real constant (to 50 digits accuracy): 1.0757660660868371580595995241652758206925302476392 = A230163. Note that x = (1 + x)^(1/10) = (1 + (1 + (1 + ...)^(1/10))^(1/10))^(1/10). The sequence of prime values in this k=9 case is A103387; The sequence of semiprime values in this k=9 case is A103397.
%C In analogy to the Fibonacci sequence, one might prefer to start this sequence with offset 0. - _M. F. Hasler_, Sep 19 2015
%D A. J. van Zanten, The golden ratio in the arts of painting, building and mathematics, Nieuw Archief voor Wiskunde, vol 17 no 2 (1999) 229-245.
%H J.-P. Allouche and T. Johnson, <a href="http://www.math.jussieu.fr/~allouche/johnson2.pdf">Narayana's Cows and Delayed Morphisms</a>
%H J.-P. Allouche and T. Johnson, <a href="http://recherche.ircam.fr/equipes/repmus/jim96/actes/Allouche.ps">Narayana's Cows and Delayed Morphisms</a>
%H Richard Padovan, <a href="https://www.nexusjournal.com/the-nexus-conferences/nexus-2002/148-n2002-padovan.html">Dom Hans Van Der Laan And The Plastic Number</a>.
%H E. S. Selmer, <a href="https://doi.org/10.7146/math.scand.a-10478">On the irreducibility of certain trinomials</a>, Math. Scand., 4 (1956) 291-306
%H J. Shallit, <a href="http://dx.doi.org/10.1016/0304-3975(88)90103-X">A generalization of automatic sequences</a>, Theoretical Computer Science, 61(1988)1-16.
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,1,1).
%F a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = a(7) = a(8) = a(9) = a(10) = 1 and for n>10: a(n) = a(n-9) + a(n-10).
%F O.g.f.: -x*(x^2+x+1)*(x^6+x^3+1)/(-1+x^9+x^10). - _R. J. Mathar_, May 02 2008
%e a(83) = 257 because a(83) = a(83-9) + a(83-10). a(74) + a(73) = 129 + 128. This sequence has as elements 5, 17 and 257, which are all Fermat Primes.
%t LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 90] (* _Charles R Greathouse IV_, Jan 11 2013 *)
%o (PARI) Vec((1+x+x^2)*(1+x^3+x^6)/(1-x^9-x^10)+O(x^99)) \\ _Charles R Greathouse IV_, Jan 11 2013
%Y Cf. A000045, A000931, A079398, A103372-A103376, A103378-A103380, A103387, A103397.
%K easy,nonn
%O 1,11
%A _Jonathan Vos Post_, Feb 15 2005
%E Edited by _R. J. Mathar_, May 02 2008
%E Edited by _M. F. Hasler_, Sep 19 2015