OFFSET
0,2
COMMENTS
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
FORMULA
G.f.: Product_{k>0}((1+x^k^2)/(1-x^k^2)).
a(n) ~ exp(3 * ((4-sqrt(2))*zeta(3/2))^(2/3) * Pi^(1/3) * n^(1/3) / 4) * ((4-sqrt(2))*zeta(3/2))^(2/3) / (2^(7/2) * sqrt(3) * Pi^(7/6) * n^(7/6)). - Vaclav Kotesovec, Dec 29 2016
EXAMPLE
E.g. a(8)=8 because 8 can be written as 8, 44*, 422, 4*22, 4211*, 4*211*, 2222, 22211*.
MAPLE
series(product((1+x^(k^2))/(1-x^(k^2)), k=1..100), x=0, 100);
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1+x^(k^2)) / (1-x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 18 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Noureddine Chair, Feb 27 2005
STATUS
approved