login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array A000292(n)*A000217(k), read by antidiagonals.
1

%I #27 May 22 2023 07:49:57

%S 1,4,3,10,12,6,20,30,24,10,35,60,60,40,15,56,105,120,100,60,21,84,168,

%T 210,200,150,84,28,120,252,336,350,300,210,112,36,165,360,504,560,525,

%U 420,280,144,45,220,495,720,840,840,735,560,360,180,55

%N Array A000292(n)*A000217(k), read by antidiagonals.

%H Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Falcao/falcao5.html">Intrinsic Properties of a Non-Symmetric Number Triangle</a>, J. Int. Seq., Vol. 26 (2023), Article 23.4.8.

%F G.f.: x*y/((1 - x)^4*(1 - y)^3). - _Stefano Spezia_, May 21 2023

%e Array begins

%e 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

%e 4, 12, 24, 40, 60, 84, 112, 144, 180, 220, ...

%e 10, 30, 60, 100, 150, 210, 280, 360, 450, 550, ...

%e 20, 60, 120, 200, 300, 420, 560, 720, 900, 1100, ...

%e 35, 105, 210, 350, 525, 735, 980, 1260, 1575, 1925, ...

%e ...

%t A[n_,k_]:=Binomial[n+2,3]Binomial[k+1,2]; Table[A[n-k+1,k],{n,10},{k,n}]//Flatten (* _Stefano Spezia_, May 21 2023 *)

%Y Cf. A000579 (antidiagonal sums).

%Y Main diagonal gives A004302.

%Y Cf. A000217, A000292.

%K nonn,tabl,easy

%O 1,2

%A _Gary W. Adamson_, Mar 20 2005

%E More terms from _Stefano Spezia_, May 21 2023