login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that 7*10^k - 9 is prime.
1

%I #38 Jul 03 2023 00:58:36

%S 1,2,3,4,14,15,23,28,54,100,272,373,403,568,639,842,969,1255,1259,

%T 3047,4838,6389,12755,15142,34943,37652,38108,38686,39384,43393,47280,

%U 55030,161192,226479

%N Numbers k such that 7*10^k - 9 is prime.

%C Also numbers k such that 6*10^k + 9*R_k - 8 is prime, where R_k = 11...1 is the repunit (A002275) of length k.

%C a(35) > 3*10^5. - _Robert Price_, Jul 02 2023

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/6/69991.htm#prime">Prime numbers of the form 699...991</a>.

%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.

%F a(n) = A101541(n) + 1.

%t Do[ If[ PrimeQ[7*10^n - 9], Print[n]], {n, 0, 10000}]

%t Select[Range[100000], PrimeQ[(7 10^# - 9)] &] (* _Vincenzo Librandi_, Oct 15 2015 *)

%o (Magma) [n: n in [1..500] | IsPrime(7*10^n-9)]; // _Vincenzo Librandi_, Oct 15 2015

%o (PARI) isok(n) = isprime(7*10^n-9 ); \\ _Michel Marcus_, Oct 15 2015

%Y Cf. A002275, A101541.

%K more,nonn

%O 1,2

%A _Robert G. Wilson v_, Jan 18 2005

%E More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008

%E Addition of a(25)-a(32) from Kamada data by _Robert Price_, Dec 13 2010

%E a(33) from _Robert Price_, Oct 14 2015

%E a(34) from _Robert Price_, Jul 02 2023