login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that 2*10^n - 7 is prime.
2

%I #33 Sep 08 2022 08:45:16

%S 1,2,3,4,6,16,21,28,48,82,122,130,282,304,4602,12984,13614,42762,

%T 90597,109928,158242

%N Numbers n such that 2*10^n - 7 is prime.

%C Also numbers n such that 10^n + 9*R_n - 6 is prime, where R_n = 11...1 is the repunit (A002275) of length n.

%C a(20) > 10^5. - _Robert Price_, Nov 16 2014

%C a(22) > 2*10^5. - _Robert Price_, Oct 25 2015

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/1/19993.htm#prime">Prime numbers of the form 199...993</a>.

%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.

%F a(n) = A102033(n) + 1.

%p select(n -> isprime(2*10^n-7),[$0..10^4]); # _Robert Israel_, Nov 16 2014

%t Do[ If[ PrimeQ[2*10^n - 7], Print[n]], {n, 0, 10000}]

%t Select[Range[1000], PrimeQ[(2 10^# - 7)] &] (* _Vincenzo Librandi_, Nov 17 2014 *)

%o (Magma) [n: n in [1..500] | IsPrime(2*10^n-7)]; // _Vincenzo Librandi_, Nov 17 2014

%o (PARI) is(n)=ispseudoprime(2*10^n-7) \\ _Charles R Greathouse IV_, Jun 06 2017

%Y Cf. A002275, A102033.

%K more,nonn

%O 1,2

%A _Robert G. Wilson v_, Dec 16 2004

%E More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008

%E Addition of a(18)-a(19) from Kamada data by _Robert Price_, Dec 10 2010

%E a(20)-a(21) from _Robert Price_, Oct 25 2015