Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Mar 30 2012 18:36:44
%S 1,1,2,1,4,3,3,8,9,4,7,40,27,16,5,36,152,189,64,25,6,139,1128,999,576,
%T 125,36,7,1036,6200,9720,3904,1375,216,49,8,5711,61120,69687,47040,
%U 11375,2808,343,64,9,56355,442552,857466,416704,163500,27432,5145,512
%N Triangle, read by rows, where the antidiagonals are formed by interleaving the rows of triangle A102098 with the rows of its matrix square (A102920).
%C Column 0 is A102917, the interleaving of A082162 with A102921. Under matrix cube, triangle A102098 shifts each column up 1 row.
%F G.f. for column k: T(k, k) = k+1 = Sum_{n>=0} T(n+k, k)*x^n*Product_{j=k..[n/2+k]} (1-(j+1)*x).
%e Rows begin:
%e [1],
%e [1,2],
%e [1,4,3],
%e [3,8,9,4],
%e [7,40,27,16,5],
%e [36,152,189,64,25,6],
%e [139,1128,999,576,125,36,7],
%e [1036,6200,9720,3904,1375,216,49,8],
%e [5711,61120,69687,47040,11375,2808,343,64,9],...
%e The antidiagonals are formed by interleaving the
%e rows of triangle A102098:
%e [1],
%e [1,2],
%e [7,8,3],
%e [139,152,27,4],...
%e with the rows of the matrix square of A102098,
%e which is triangle A102920:
%e [1],
%e [3,4],
%e [36,40,9],
%e [1036,1128,189,16],...
%e G.f. for Column 0 (A102917): 1 = 1*(1-x) + 1*x*(1-x)
%e + 1*x^2*(1-x)(1-2x) + 3*x^3*(1-x)(1-2x)
%e + 7*x^4*(1-x)(1-2x)(1-3x) + 36*x^5*(1-x)(1-2x)(1-3x) +...
%e + A082162(n)*x^(2n)*(1-x)(1-2x)*..*(1-(n+1)x)
%e + A102921(n)*x^(2n+1)*(1-x)(1-2x)*..*(1-(n+1)x) + ...
%e G.f. for Column 1 (A102918): 2 = 2*(1-2x) + 4*x*(1-2x)
%e + 8*x^2*(1-2x)(1-3x) + 40*x^3*(1-2x)(1-3x)
%e + 152*x^4*(1-2x)(1-3x)(1-4x) + 1128*x^5*(1-2x)(1-3x)(1-4x) +...
%e + T(2n+1,1)*x^(2n)*(1-2x)(1-3x)*..*(1-(n+2)x)
%e + T(2n+2,1)*x^(2n+1)*(1-2x)(1-3x)*..*(1-(n+2)x) + ...
%o (PARI) {T(n,k)=if(n<k,0,if(n==k,k+1, polcoeff(k+1-sum(i=k,n-1,T(i,k)*x^i*prod(j=1,(i-k)\2+1,1-(j+k)*x+x*O(x^n))),n)))}
%Y Cf. A102086, A102098, A102920, A102917, A102918.
%K nonn,tabl
%O 0,3
%A _Paul D. Hanna_, Jan 21 2005