login
A102877
a(0) = 1, a(1) = 1; for n>0, a(2*n) = 3*a(2n-1), a(2*n+1) = 3*a(2*n) - 2*a(n-1).
2
1, 1, 3, 7, 21, 61, 183, 543, 1629, 4873, 14619, 43815, 131445, 394213, 1182639, 3547551, 10642653, 31926873, 95780619, 287338599, 862015797, 2586037645, 7758112935, 23274309567, 69822928701, 209468698473, 628406095419
OFFSET
0,3
COMMENTS
The sequence of first differences of these numbers (2, 4, 14, 40 ...), divided by 2, is (1, 2, 7, 20, ...) - see A111017. This is close to the original sequence.
..... 1, 1, 3, 7, 21, 61, 183, 543, 1629, 4873, 14619
........ 1, 2, 7, 20, 61, 180, 543, 1622, 4873, 14598
....... 2=3-1, 20=21-1, 180=183-3, 1622=1629-7, 14598=14619-21.
LINKS
FORMULA
G.f. g(z) satisfies g(z) = 1 - 2*z + 3*z*g(z) - 2*z^3*g(z^2). - Robert Israel, Jun 29 2020
MAPLE
f:= proc(n) option remember; if n::even then 3*procname(n-1) else 3*procname(n-1)-2*procname((n-3)/2) fi end proc:
f(0):= 1: f(1):= 1:
map(f, [$0..50]); # Robert Israel, Jun 29 2020
MATHEMATICA
a[0]:=1; a[1]:=1; a[n_]:=If[EvenQ[n], 3*a[n-1], 3*a[n-1]-2*a[(n-3)/2]]; Table[a[i], {i, 0, 50}] (* Stefan Steinerberger, May 22 2007 *)
PROG
(PARI) {m=26; v=vector(m+1); v[1]=1; v[2]=1; for(n=2, m, k=3*v[n]; if(n%2==1, k=k-2*v[(n-1)/2]); v[n+1]=k); print(v)} /* Klaus Brockhaus, May 20 2007 */
CROSSREFS
This sequence is connected with A129770 and A129772.
Sequence in context: A091486 A056779 A183113 * A122983 A351822 A005355
KEYWORD
nonn
AUTHOR
Paul Curtz, May 16 2007
EXTENSIONS
More terms from Klaus Brockhaus and Stefan Steinerberger, May 20 2007
STATUS
approved