login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102847
a(0)=1, a(n) = a(n-1)*a(n-1) + 2.
3
1, 3, 11, 123, 15131, 228947163, 52416803445748571, 2747521283470239265968814548542043, 7548873203121950871924356140057489033996373873303512592376938613851
OFFSET
0,2
COMMENTS
The Mandelbrot-process is z:=z*z+c, where z and c is complex. In our case c=2 and the initial z is 1. The process is very quickly increasing.
Prime for a(1)=3, a(2)=11, a(4)=15131; semiprime for a(3) = 123 = 3 * 41, a(5) = 228947163 = 3 * 76315721. a(6), added by Jonathan Vos Post, has 4 prime factors. a(7) = 41 * 811^2 * 106693969 * 317171188688357726699 * 8272236925540996054440172449761. When is the next prime in the sequence? - Jonathan Vos Post, Feb 28 2005
Composite for a(8), a(9), ..., a(19). a(20) is roughly 2^909982 and its primality is unknown. - Russ Cox, Apr 02 2006
FORMULA
a(n) ~ c^(2^n), where c = 1.8249111600523655937123650418390169034... - Vaclav Kotesovec, Sep 20 2013
EXAMPLE
a(2)=11, a(3)=11*11+2=123.
MAPLE
a[0]:=1: for n from 1 to 10 do a[n]:=a[n-1]^2+2 od: seq(a[n], n=0..9); # Emeric Deutsch
MATHEMATICA
a[0] := 1; a[n_] := a[n - 1]^2 + 2; Table[a[n], {n, 0, 10}] (* Stefan Steinerberger, Apr 08 2006 *)
NestList[#^2+2&, 1, 10] (* Harvey P. Dale, Mar 27 2023 *)
PROG
(PARI) a(n)=if(n<1, n==0, 2+a(n-1)^2) /* Michael Somos, Mar 25 2006 */
CROSSREFS
Bisection of A065653.
Sequence in context: A209107 A015047 A339326 * A113258 A113848 A287429
KEYWORD
easy,nonn
AUTHOR
Miklos Kristof, Feb 28 2005
EXTENSIONS
a(7) from Jonathan Vos Post, Feb 28 2005
a(8) from Emeric Deutsch, Jun 13 2005
STATUS
approved