login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102847 a(0)=1, a(n) = a(n-1)*a(n-1) + 2. 2
1, 3, 11, 123, 15131, 228947163, 52416803445748571, 2747521283470239265968814548542043, 7548873203121950871924356140057489033996373873303512592376938613851 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The Mandelbrot-process is z:=z*z+c, where z and c is complex. In our case c=2 and the initial z is 1. The process is very quickly increasing.

Prime for a(1)=3, a(2)=11, a(4)=15131; semiprime for a(3) = 123 = 3 * 41, a(5) = 228947163 = 3 * 76315721. a(6), added by Jonathan Vos Post, has 4 prime factors. a(7) = 41 * 811^2 * 106693969 * 317171188688357726699 * 8272236925540996054440172449761. When is the next prime in the sequence? - Jonathan Vos Post, Feb 28 2005

Composite for a(8), a(9), ..., a(19). a(20) is roughly 2^909982 and its primality is unknown. - Russ Cox, Apr 02 2006

LINKS

Table of n, a(n) for n=0..8.

FORMULA

a(n) ~ c^(2^n), where c = 1.8249111600523655937123650418390169034... - Vaclav Kotesovec, Sep 20 2013

EXAMPLE

a(2)=11, a(3)=11*11+2=123.

MAPLE

a[0]:=1: for n from 1 to 10 do a[n]:=a[n-1]^2+2 od: seq(a[n], n=0..9); # Emeric Deutsch

MATHEMATICA

a[0] := 1; a[n_] := a[n - 1]^2 + 2; Table[a[n], {n, 0, 10}] (* Stefan Steinerberger, Apr 08 2006 *)

PROG

(PARI) a(n)=if(n<1, n==0, 2+a(n-1)^2) /* Michael Somos, Mar 25 2006 */

CROSSREFS

Bisection of A065653.

Sequence in context: A209107 A015047 A339326 * A113258 A113848 A287429

Adjacent sequences:  A102844 A102845 A102846 * A102848 A102849 A102850

KEYWORD

easy,nonn

AUTHOR

Miklos Kristof, Feb 28 2005

EXTENSIONS

a(7) from Jonathan Vos Post, Feb 28 2005

a(8) from Emeric Deutsch, Jun 13 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 28 06:50 EDT 2021. Contains 346317 sequences. (Running on oeis4.)