login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(-1) = 1, a(n) = Sum_{k=0..n} A034851(n,k)*a(k-1) where A034851(n,k) are entries in Losanitsch's triangle.
1

%I #5 Nov 06 2019 17:50:48

%S 1,1,2,4,11,30,103,354,1440,5911,27651,131062,690543,3693765,21585068,

%T 128165652,820859645,5343318222,37155889171,262577578134,

%U 1967281479508,14975397597557,120122032987319,978625889818014,8359402026954939,72495015037575673,656446920912518700

%N a(-1) = 1, a(n) = Sum_{k=0..n} A034851(n,k)*a(k-1) where A034851(n,k) are entries in Losanitsch's triangle.

%H Andrew Howroyd, <a href="/A102814/b102814.txt">Table of n, a(n) for n = -1..200</a>

%o (PARI) \\ here T(n,k) is A034851(n,k).

%o T(n, k) = {(1/2)*(binomial(n, k) + binomial(n%2, k%2) * binomial(n\2, k\2))}

%o seq(n)={my(a=vector(n+1)); a[1]=1; for(n=1, n, a[n+1]=sum(k=1, n, a[k]*T(n-1,k-1))); a} \\ _Andrew Howroyd_, Nov 06 2019

%Y Cf. A034851.

%K nonn

%O -1,3

%A _Gerald McGarvey_, Feb 26 2005

%E Terms a(12) and beyond from _Andrew Howroyd_, Nov 06 2019