Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Aug 29 2020 13:13:59
%S 2,-1,0,1,2,13,80,579,4738,43387,439792,4890741,59216642,775596313,
%T 10927434464,164806435783,2649391469058,45226435601207,
%U 817056406224416,15574618910994665,312400218671253762,6577618644576902053,145051250421230224304,3343382818203784146955,80399425364623070680706,2013619745874493923699123
%N Same as A000179, except that a(0) = 2.
%C For any integer n>=0, 2 * Integral_{t=-2..2} T_n(t/2)*exp(-t)*dt = 4 * Integral_{z=-1..1} T_n(z)*exp(-2*z)*dz = a(n)*exp(2) - A300484(n)*exp(-2). - _Max Alekseyev_, Mar 08 2018
%D J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 197.
%H Vladimir Shevelev, <a href="http://arxiv.org/abs/1104.4051">Spectrum of permanent's values and its extremal magnitudes in Λ_n^3 and Λ_n(α,β,γ)</a>, arXiv:1104.4051 [math.CO], 2011.
%F a(n) = Sum_{i=0..n} A127672(n,i) * A000023(i). - _Max Alekseyev_, Mar 06 2018
%F a(n) = A300481(2,n) = A300480(-2,n). - _Max Alekseyev_, Mar 06 2018
%F a(n) = A335391(0,n) (Touchard). - _William P. Orrick_, Aug 29 2020
%o (PARI) { A102761(n) = subst( serlaplace( 2*polchebyshev(n, 1, (x-2)/2)), x, 1); } \\ _Max Alekseyev_, Mar 06 2018
%Y Row m=2 in A300481.
%Y Cf. A000023, A000179, A000186, A300484.
%Y A000179, A102761, and A335700 are all essentially the same sequence but with different conventions for the initial terms a(0) and a(1). - _N. J. A. Sloane_, Aug 06 2020
%K sign,easy
%O 0,1
%A _N. J. A. Sloane_, Apr 04 2010, following a suggestion from _Vladimir Shevelev_
%E Changed a(0)=2 (making the sequence more consistent with existing formulae) by _Max Alekseyev_, Mar 06 2018