login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of (Pi^2)/2.
22

%I #71 May 13 2024 09:18:55

%S 4,9,3,4,8,0,2,2,0,0,5,4,4,6,7,9,3,0,9,4,1,7,2,4,5,4,9,9,9,3,8,0,7,5,

%T 5,6,7,6,5,6,8,4,9,7,0,3,6,2,0,3,9,5,3,1,3,2,0,6,6,7,4,6,8,8,1,1,0,0,

%U 2,2,4,1,1,2,0,9,6,0,2,6,2,1,5,0,0,8,8,6,7,0,1,8,5,9,2,7,6,1,1,5,9,1,2,0,1

%N Decimal expansion of (Pi^2)/2.

%C Also equals the area under the peak-shaped even function f(x)=x/sinh(x).

%C Proof: For the upper half of the integral, write f(x) = 2x*exp(-x)/(1-exp(-2x)) = sum_{k=1..infinity} 2x*exp(-(2k-1)x) and integrate term by term from zero to infinity. - _Stanislav Sykora_, Nov 01 2013

%C Volume of the 4-dimensional unit sphere; the volume of the n-dimensional unit sphere is Pi^(n/2)/gamma(n/2+1) (see n-ball link and A164103). - _Rick L. Shepherd_, Jun 22 2017

%C Pi^2/2 is the squared side-length of a square with diagonal Pi. - _Wesley Ivan Hurt_, Jan 28 2022

%D J. Rivaud, Analyse, Séries, Equations différentielles, Mathématiques Supérieures et Spéciales, Premier Cycle Universitaire, Vuibert, 1981, Exercice 2, p. 135.

%D David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Middlesex, England: Penguin Books, 1986, p. 53.

%H G. C. Greubel, <a href="/A102753/b102753.txt">Table of n, a(n) for n = 1..10000</a>

%H T. Amdeberhan, L. Medina and V. H. Moll, <a href="https://arxiv.org/abs/0705.2379">The integrals in Gradshteyn and Ryzhik. Part 5: Some trigonometric integrals</a>, equation 2.39, arXiv:0705.2379 [math.CA], 2007.

%H Renzo Sprugnoli, <a href="https://www.emis.de/journals/INTEGERS/papers/g27/g27.Abstract.html">Sums of reciprocals of the central binomial coefficients</a>, El. J. Combin. Numb. Th. 6 (2006) # A27

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Hypersphere.html">Hypersphere</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TrigammaFunction.html">Trigamma Function</a>.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Hypersphere">Hypersphere</a>.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Volume_of_an_n-ball">Volume of an n-ball</a>.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%F Equals psi_1(1/2), where psi_1(x) is the second logarithmic derivative of GAMMA(x).

%F Equals the volume of revolution of the sine or cosine curve for one half period, Integral_{0,Pi} Sin(x)^2 dx. - _Robert G. Wilson v_, Dec 15 2005

%F Equals Sum_{k >=1} 4^k/(k^2*binomial(2*k,k)) [Amdeberhan, Sprugnoli]. - _R. J. Mathar_, Sep 28 2007

%F Equals 4*Sum_{k >=1} 1/(2k-1)^2 [Wells].

%F From _Peter Bala_, Nov 05 2019: (Start)

%F Pi^2/2 = Integral_{x = 0..inf} cosh(x)*x^2/sinh(x)^2 dx.

%F Pi^2/2 = 5*sum_{k >= 0} binomial(2*k,k)(-1/16)^k*1/(2*k+1)^2.

%F Pi^2/2 = 10*Integral_{x = 0..1/2} 1/x*log(x + sqrt(1 + x^2)) dx. (End)

%F Pi^2/20 = 0.1 * Pi^2/2 = Sum_{k>=1} 1/A026424(k)^2. - _Amiram Eldar_, Aug 17 2020

%F Conjecture: Pi^2/2 = Sum_{n = -oo..oo} ( cos(Pi*sqrt(n^2+1)) - cos(Pi*n) ) (using the Eisenstein summation convention). - _Peter Bala_, Oct 08 2021

%F Pi^2/2 = Integral_{x = -oo..oo} x/sinh(x) dx (see Rivaud reference). - _Bernard Schott_, Jan 28 2022

%e 4.9348022005446793094172454999380755676568497036203953132066746881100\ 224112096026215008867018592761159120129568870115720388....

%t RealDigits[Pi^2/2, 10, 111][[1]] (* _Robert G. Wilson v_, Dec 15 2005 *)

%o (PARI) Pi^2/2 \\ _Michel Marcus_, Sep 04 2015

%Y Cf. A002388, A000796, A019699, A026424, A164103, A164105, A164106, A164108, A248359, A276023.

%K cons,nonn

%O 1,1

%A Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Feb 10 2005