login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of Sum_{k=1..n} k^2*H_{n+k} where H_m = Sum_{i=1..m}.
3

%I #10 Dec 03 2018 18:31:34

%S 0,3,61,499,1657,19627,270271,566414,10013422,98370749,101287949,

%T 2390592307,12232312607,37470326437,1107461467873,139734625012252,

%U 141993136103452,36029639090623,1351662817439371,1369250429650771,56824258828125611,2471493519758983073

%N Numerator of Sum_{k=1..n} k^2*H_{n+k} where H_m = Sum_{i=1..m}.

%H M. Kauers and C. Schneider, <a href="https://doi.org/10.1016/j.disc.2006.04.005">Indefinite summation with unspecified summands</a>, Discr. Math., 306 (2006), 2073-2083. See Eq. 4.

%e 0, 3/2, 61/6, 499/15, 1657/21, 19627/126, 270271/990, 566414/1287, ...

%t a[n_] := Numerator[Sum[k^2 * HarmonicNumber[n+k], {k,1,n}]]; Array[a, 30, 0] (* _Amiram Eldar_, Dec 03 2018 *)

%o (PARI) a(n) = numerator(sum(k=1, n, k^2*sum(i=1, n+k, 1/i))); \\ _Michel Marcus_, Dec 03 2018

%Y Cf. A001008, A002805, A144653.

%K nonn,frac

%O 0,2

%A _N. J. A. Sloane_, Jan 28 2009