login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of digits >= 8 in decimal representation of n.
6

%I #22 Feb 19 2023 10:02:57

%S 0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,

%T 0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,

%U 1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1,1,1,2,2,0,0,0,0,0

%N Number of digits >= 8 in decimal representation of n.

%C a(n) = 0 iff n is in A007094 (numbers in base 8). - _Bernard Schott_, Feb 18 2023

%H Hieronymus Fischer, <a href="/A102681/b102681.txt">Table of n, a(n) for n = 0..10000</a>

%F From _Hieronymus Fischer_, Jun 10 2012: (Start)

%F a(n) = Sum_{j=1..m+1} (floor(n/10^j + 1/5) - floor(n/10^j)), where m = floor(log_10(n)).

%F G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(8*10^j) - x^(10*10^j))/(1 - x^10^(j+1)). (End)

%p p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=8 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..120); # _Emeric Deutsch_, Feb 23 2005

%Y Cf. A007094, A027868, A054899, A055640, A055641, A102669-A102685, A117804, A122840, A122841, A160093, A160094, A196563, A196564. Partial sums see A102682.

%Y Cf. A000120, A000788, A023416, A059015 (for base 2).

%K nonn,base,easy

%O 0,89

%A _N. J. A. Sloane_, Feb 03 2005

%E More terms from _Emeric Deutsch_, Feb 23 2005