login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into distinct parts in which the number of parts divides n.
82

%I #16 May 21 2021 08:11:33

%S 1,1,1,2,1,4,1,4,4,5,1,15,1,7,14,17,1,28,1,40,28,11,1,99,31,13,49,99,

%T 1,186,1,152,76,17,208,425,1,19,109,699,1,584,1,433,823,23,1,1625,437,

%U 1140,193,746,1,2003,1748,2749,244,29,1,7404,1,31,4158,3258,3766,6307,1

%N Number of partitions of n into distinct parts in which the number of parts divides n.

%H Alois P. Heinz, <a href="/A102627/b102627.txt">Table of n, a(n) for n = 1..1000</a>

%e From _Gus Wiseman_, Sep 24 2019: (Start)

%e The a(1) = 1 through a(12) = 15 strict integer partitions whose average is an integer (A = 10, B = 11, C = 12):

%e (1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (B) (C)

%e (31) (42) (53) (432) (64) (75)

%e (51) (62) (531) (73) (84)

%e (321) (71) (621) (82) (93)

%e (91) (A2)

%e (B1)

%e (543)

%e (642)

%e (651)

%e (732)

%e (741)

%e (831)

%e (921)

%e (5421)

%e (6321)

%e (End)

%p a:= proc(m) option remember; local b; b:=

%p proc(n, i, t) option remember; `if`(i*(i+1)/2<n,

%p 0, `if`(n=0, `if`(irem(m, t)=0, 1, 0),

%p b(n, i-1, t)+b(n-i, min(n-i, i-1), t+1)))

%p end: `if`(isprime(m), 1, b(m$2, 0))

%p end:

%p seq(a(n), n=1..100); # _Alois P. Heinz_, Sep 25 2019

%t npdp[n_]:=Count[Select[IntegerPartitions[n],Length[#]==Length[ Union[ #]]&], _?(Divisible[n,Length[#]]&)]; Array[npdp,70] (* _Harvey P. Dale_, Feb 12 2016 *)

%t a[m_] := a[m] = Module[{b}, b[n_, i_, t_] := b[n, i, t] = If[i(i+1)/2 < n, 0, If[n == 0, If[Mod[m, t] == 0, 1, 0], b[n, i - 1, t] + b[n - i, Min[n - i, i - 1], t + 1]]]; If[PrimeQ[m], 1, b[m, m, 0]]];

%t Array[a, 100] (* _Jean-François Alcover_, May 21 2021, after _Alois P. Heinz_ *)

%Y The BI-numbers of these partitions are given by A326669 (numbers whose binary indices have integer mean).

%Y The non-strict case is A067538.

%Y Strict partitions with integer geometric mean are A326625.

%Y Strict partitions whose maximum divides their sum are A326850.

%Y Cf. A018818, A033630, A316413, A326622, A326843, A326851.

%K easy,nonn

%O 1,4

%A _Vladeta Jovovic_, Feb 01 2005