login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: coefficients of characteristic polynomials of lower triangular matrix of Robbins triangle numbers.
0

%I #11 Aug 23 2013 07:55:08

%S 0,1,-1,1,-2,1,1,-4,5,-2,1,-11,33,-37,14,1,-53,495,-1423,1568,-588,1,

%T -482,23232,-213778,612035,-673260,252252,1,-7918,3607384,-172966930,

%U 1590265243,-4551765520,5006613612,-1875745872,1,-226266,1732486848,-787838048562,37768573496883,-347235787044084

%N Triangle read by rows: coefficients of characteristic polynomials of lower triangular matrix of Robbins triangle numbers.

%C Roots of n-th characteristic polynomial are the first n Robbins numbers (A005130).

%C Second column of triangle is partial sums of Robbins numbers negated (A173312).

%e Generation of the triangle:

%e We begin with A048601

%e 1

%e 1 1

%e 2 3 2

%e 7 14 14 7

%e 42 105 135 105 42

%e ...

%e and get polynomials

%e x - 1

%e x^2 - 2*x + 1

%e x^3 - 4*x^2 + 5*x - 2

%e x^4 - 11*x^3 + 33*x^2 - 37*x + 14

%e x^5 - 53*x^4 + 495*x^3 - 1423*x^2 + 1568*x - 588

%e ...

%o (PARI) T(n, k) = binomial(n+k-2,k-1)*((2*n-k-1)!/(n-k)!)*prod(j=0,n-2,((3*j+1)!/(n+j)!)) RM(n)=M=matrix(n,n);for(l=1,n, for(k=1,l,M[l,k]=T(l,k)));M for(i=1,10,print(charpoly(RM(i))))

%Y Cf. A005130, A048601.

%K sign,tabl

%O 0,5

%A Lambert Klasen (lambert.klasen(AT)gmx.net) and _Gary W. Adamson_, Jan 30 2005

%E Sequence has been prepended with a(0)=0 to enable table display (so offset has been set to 0 accordingly) by _Michel Marcus_, Aug 23 2013