Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Mar 07 2018 08:19:39
%S 1,-1,1,-1,-2,1,2,0,-3,1,-1,4,2,-4,1,-1,-5,5,5,-5,1,2,0,-12,4,9,-6,1,
%T -1,7,7,-21,0,14,-7,1,-1,-8,12,24,-30,-8,20,-8,1,2,0,-27,9,54,-36,-21,
%U 27,-9,1,-1,10,15,-60,-15,98,-35,-40,35,-10,1,-1,-11,22,66,-99,-77,154,-22,-66,44,-11,1,2,0,-48,16,180,-120,-196,216,9
%N T(n, k) = (-1)^n*2*[x^k] ChebyshevT(n, (1 - x)/2) with T(0,0) = 1, for 0 <= k <= n, triangle read by rows.
%C Previous name: Triangular matrix, read by rows, equal to the matrix inverse of triangle A094531, which is the right-hand side of trinomial table A027907.
%C Riordan array ((1-x^2)/(1+x+x^2),x/(1+x+x^2)). - _Paul Barry_, Jul 14 2005
%C Inverse of A094531. Rows sums are 1,0,-2,0,2,0,-2,... with g.f. (1-x^2)/(1+x^2). Diagonal sums are (-1)^n*C(1,n) with g.f. 1-x. - _Paul Barry_, Jul 14 2005
%C Row sums form the period 4 sequence: {1, 0,-2,0,2, 0,-2,0,2, ...}. Absolute row sums form A102588.
%C Sum_{k=0..n} T(n,k)^2 = 2*A002426(n) for n>0.
%H P. Peart and W.-J. Woan, <a href="http://dx.doi.org/10.1016/S0166-218X(99)00166-3">A divisibility property for a subgroup of Riordan matrices</a>, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.
%F T(n,k) = T(n-1,k-1) - T(n-1,k) - T(n-2,k), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = T(2,0) = -1, T(2,1) = -2, T(n,k) = 0 if k<0 or if k>n. - _Philippe Deléham_, Jan 22 2014
%F From _Peter Bala_, Jun 29 2015: (Start)
%F Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = x/(1 + x + x^2) and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan).
%F T(n,k) = [x^(n-k)] f(x)^n with f(x) = ( 1 - x + sqrt(1 - 2*x - 3*x^2) )/2. In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)
%e Rows begin:
%e [1],
%e [ -1,1],
%e [ -1,-2,1],
%e [2,0,-3,1],
%e [ -1,4,2,-4,1],
%e [ -1,-5,5,5,-5,1],
%e [2,0,-12,4,9,-6,1],
%e [ -1,7,7,-21,0,14,-7,1],
%e [ -1,-8,12,24,-30,-8,20,-8,1],
%e [2,0,-27,9,54,-36,-21,27,-9,1],
%e [ -1,10,15,-60,-15,98,-35,-40,35,-10,1],
%e [ -1,-11,22,66,-99,-77,154,-22,-66,44,-11,1],...
%t Table[If[n==0, 1, CoefficientList[(-1)^n 2 ChebyshevT[n, (1-x)/2], x]], {n, 0, 9}] // Flatten (* _Peter Luschny_, Mar 07 2018 *)
%o (PARI) {T(n,k)=local(A); A=matrix(n+1,n+1,r,c,if(r<c-1,0,polcoeff((1+x+x^2)^(r-1),r+c-2))); return((A^-1)[n+1,k+1])}
%o (PARI) tabl(nn) = {my(m = matrix(nn, nn, n, k, n--; k--; sum(j=0, n, binomial(n,j)*binomial(j,n-k-j)))^(-1)); for (n=1, nn, for (k=1, n, print1(m[n, k], ", ");); print(););} \\ _Michel Marcus_, Jun 30 2015
%Y Cf. A094531 (matrix inverse), A102588, A002426.
%K sign,tabl
%O 0,5
%A _Paul D. Hanna_, Jan 22 2005
%E New name by _Peter Luschny_, Mar 07 2018