login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^floor(n/2)*((-1)^floor(n/2) + (-1)^n)/2.
2

%I #13 Sep 15 2023 01:43:10

%S 1,0,0,-2,4,0,0,-8,16,0,0,-32,64,0,0,-128,256,0,0,-512,1024,0,0,-2048,

%T 4096,0,0,-8192,16384,0,0,-32768,65536,0,0,-131072,262144,0,0,-524288,

%U 1048576,0,0,-2097152,4194304,0,0,-8388608,16777216,0,0,-33554432,67108864,0,0,-134217728

%N a(n) = 2^floor(n/2)*((-1)^floor(n/2) + (-1)^n)/2.

%H G. C. Greubel, <a href="/A102561/b102561.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,4).

%F a(n) = ((-2)^floor(n/2) + (-1)^n*2^floor(n/2))/2.

%F a(n) = A102560(n)*2^floor(n/2).

%F a(n) = 4*a(n-4). - _Georg Fischer_, Sep 02 2021

%t LinearRecurrence[{0,0,0,4}, {1,0,0,-2}, 64] (* _Georg Fischer_, Sep 02 2021 *)

%o (Magma) &cat [[4^n,0,0,-2*4^n]: n in [0..20]]; // _G. C. Greubel_, Sep 15 2023

%o (SageMath) [((-2)^(n//2) + (-1)^n*2^(n//2))/2 for n in range(41)] # _G. C. Greubel_, Sep 15 2023

%Y Cf. A102560.

%K easy,sign

%O 0,4

%A _Paul Barry_, Jan 14 2005