login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: row n contains the numbers C(n,k)^(k-1) for 0 <= k <= n, n >= 0.
2

%I #13 Jul 12 2019 16:32:49

%S 1,1,1,1,1,1,1,1,3,1,1,1,6,16,1,1,1,10,100,125,1,1,1,15,400,3375,1296,

%T 1,1,1,21,1225,42875,194481,16807,1,1,1,28,3136,343000,9834496,

%U 17210368,262144,1,1,1,36,7056,2000376,252047376,4182119424,2176782336,4782969,1

%N Triangle read by rows: row n contains the numbers C(n,k)^(k-1) for 0 <= k <= n, n >= 0.

%H Harvey P. Dale, <a href="/A102480/b102480.txt">Table of n, a(n) for n = 0..1000</a>

%H C. Lamathe, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Lamathe/lamathe2.html">The Number of Labeled k-Arch Graphs</a>, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.1.

%e Triangle begins:

%e 1

%e 1 1

%e 1 1 1

%e 1 1 3 1

%e 1 1 6 16 1

%e 1 1 10 100 125 1

%p T:=proc(n,k) if k>n then 0 else binomial(n,k)^(k-1) fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form; _Emeric Deutsch_, Apr 12 2005

%t Table[Binomial[n,k]^(k-1),{n,0,10},{k,0,n}]//Flatten (* _Harvey P. Dale_, Jul 12 2019 *)

%o (PARI) tabl(nn) = {for (n=0, nn, for (k=0, n, print1(binomial(n,k)^(k-1), ", ");); print(););} \\ _Michel Marcus_, May 23 2015

%Y Diagonals give A000272, A098721-A098724. A102479 is another version.

%K nonn,tabl,easy

%O 0,9

%A _N. J. A. Sloane_, Feb 24 2005

%E More terms from _Emeric Deutsch_, Apr 12 2005