Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jul 25 2018 10:58:13
%S 0,1,1,1,3,3,5,9,10,14,22,28,37,53,66,85,120,147,188,252,308,394,509,
%T 621,783,990,1210,1500,1872,2272,2793,3447,4152,5064,6184,7414,8984,
%U 10856,12964,15592,18711,22250,26576,31690,37520,44565,52856,62292
%N Let pi be an unrestricted partition of n with the summands written in binary notation. a(n) is the number of such partitions whose binary representation has an odd number of binary ones.
%H Alois P. Heinz, <a href="/A102437/b102437.txt">Table of n, a(n) for n = 0..1000</a>
%e a(5) = 3 because there are 3 partitions of 5 with an odd number of binary ones in their binary representation, namely: 11+10, 10+10+1 and 1+1+1+1+1.
%p p:= proc(n) option remember; local c, m;
%p c:= 0; m:= n;
%p while m>0 do c:= c +irem(m, 2, 'm') od;
%p c
%p end:
%p b:= proc(n, i, t) option remember;
%p if n<0 then 0
%p elif n=0 then t
%p elif i=0 then 0
%p else b(n, i-1, t) +b(n-i, i, irem(p(i)+t, 2))
%p fi
%p end:
%p a:= n-> b(n, n, 0):
%p seq(a(n), n=0..60); # _Alois P. Heinz_, Feb 21 2011
%t Table[Length[Select[Map[Apply[Join,#]&,Map[IntegerDigits[#,2]&,Partitions[n]]],OddQ[Count[#,1]]&]],{n,0,40}] (* _Geoffrey Critzer_, Sep 28 2013 *)
%o (PARI) seq(n)={apply(t->polcoeff(lift(t), 1), Vec(prod(i=1, n, 1/(1 - x^i*Mod( y^hammingweight(i), y^2-1 )) + O(x*x^n))))} \\ _Andrew Howroyd_, Jul 20 2018
%Y Cf. A000041, A000120, A102425, A316996.
%K nonn
%O 0,5
%A _David S. Newman_, Feb 23 2005
%E More terms from _Vladeta Jovovic_, Feb 23 2005