login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows giving coefficients of polynomials defined by F(0,x)=0, F(1,x)=1, F(n,x) = F(n-1,x) + x*F(n-2,x).
21

%I #102 Sep 08 2022 08:45:16

%S 0,1,1,1,1,2,1,1,3,1,3,4,1,1,6,5,1,4,10,6,1,1,10,15,7,1,5,20,21,8,1,1,

%T 15,35,28,9,1,6,35,56,36,10,1,1,21,70,84,45,11,1,7,56,126,120,55,12,1,

%U 1,28,126,210,165,66,13,1,8,84,252,330,220,78,14,1,1,36,210,462,495,286,91,15,1

%N Triangle read by rows giving coefficients of polynomials defined by F(0,x)=0, F(1,x)=1, F(n,x) = F(n-1,x) + x*F(n-2,x).

%C Essentially the same as A098925: a(0)=0 followed by A098925. - _R. J. Mathar_, Aug 30 2008

%C F(n) + 2x * F(n-1) gives Lucas polynomials (cf. A034807). - Maxim Krikun (krikun(AT)iecn.u-nancy.fr), Jun 24 2007

%C After the initial 0, these are the nonzero coefficients of the Fibonacci polynomials; see the Mathematica section. - _Clark Kimberling_, Oct 10 2013

%C Aside from signs and index shift, the coefficients of the characteristic polynomial of the Coxeter adjacency matrix for the Coxeter group A_n related to the Chebyshev polynomial of the second kind (cf. Damianou link p. 19). - _Tom Copeland_, Oct 11 2014

%C Aside from the initial zeros, these are the antidiagonals read from bottom to top of the numerical coefficients of the Maurer-Cartan form matrix of the Leibniz group L^(n)(1,1) presented on p. 9 of the Olver paper, which is generated as exp[c. * M] with (c.)^n = c_n and M the Lie infinitesimal generator A218272. Reverse of A011973. - _Tom Copeland_, Jul 02 2018

%D Dominique Foata and Guo-Niu Han, Multivariable tangent and secant q-derivative polynomials, Manuscript, Mar 21 2012.

%H G. C. Greubel, <a href="/A102426/b102426.txt">Rows n = 0..100 of triangle, flattened</a>

%H R. Andre-Jeannin, <a href="http://www.fq.math.ca/Scanned/32-3/andre-jeannin.pdf">A generalization of Morgan-Voyce polynomials</a>, The Fibonacci Quarterly 32.3 (1994): 228-31.

%H H.-H. Chern, H.-K. Hwang, and T.-H. Tsai, <a href="http://arxiv.org/abs/1406.0614">Random unfriendly seating arrangement in a dining table</a>, arXiv preprint arXiv:1406.0614 [math.PR], 2014.

%H T. Copeland, <a href="http://tcjpn.wordpress.com/2015/10/12/the-elliptic-lie-triad-kdv-and-ricattt-equations-infinigens-and-elliptic-genera/">Addendum to Elliptic Lie Triad</a>

%H P. Damianou, <a href="http://arxiv.org/abs/1110.6620">On the characteristic polynomials of Cartan matrices and Chebyshev polynomials</a>, arXiv preprint arXiv:1110.6620 [math.RT], 2014.

%H G. Ferri, <a href="http://www.fq.math.ca/Scanned/35-2/ferri.pdf">The appearance of Fibonacci and Lucas numbers in the simulation of electrical power lines supplied by two sides</a>, The Fibonacci Quarterly 35.2 (1997): 149-55.

%H Dominique Foata and Guo-Niu Han, <a href="http://irma.math.unistra.fr/~foata/paper/pub119.html">Multivariable tangent and secant q-derivative polynomials</a>, Moscow Journal of Combinatorics and Number Theory, vol. 2, issue 3, 2012, pp. 34-84, [pp. 232-282].

%H G. Hetyei, <a href="http://arxiv.org/abs/1211.2494">Hurwitzian continued fractions containing a repeated constant and an arithmetic progression</a>, arXiv preprint arXiv:1211.2494 [math.CO], 2012. - From _N. J. A. Sloane_, Jan 02 2013

%H P. Olver, <a href="http://www-users.math.umn.edu/~olver/di_/contact.pdf">The canonical contact form</a>, 2005.

%H Z. Trzaska, <a href="http://www.fq.math.ca/Scanned/34-2/trzaska.pdf">On Fibonacci hyberbolic geometry and modified number triangles</a>, Fibonacci Quarterly, 34.2 (1996): 129-38.

%F Alternatively, as n is even or odd: T(n-2, k) + T(n-1, k-1) = T(n, k), T(n-2, k) + T(n-1, k) = T(n, k)

%F T(n, k) = binomial(floor(n/2)+k, floor((n-1)/2-k) ). - _Paul Barry_, Jun 22 2005

%F Beginning with the second polynomial in the example and offset=0, P(n,t)= Sum_{j=0..n}, binomial(n-j,j)*x^j with the convention that 1/k! is zero for k=-1,-2,..., i.e., 1/k! = lim_{c->0} 1/(k+c)!. - _Tom Copeland_, Oct 11 2014

%F From _Tom Copeland_, Jan 19 2016: (Start)

%F O.g.f.: (x + x^2 - x^3) / (1 - (2+t)*x^2 + x^4) = (x^2 (even part) + x*(1-x^2) (odd)) / (1 - (2+t)*x^2 + x^4).

%F Recursion relations:

%F A) p(n,t) = p(n-1,t) + p(n-2,t) for n=2,4,6,8,...

%F B) p(n,t) = t*p(n-1,t) + p(n-2,t) for n=3,5,7,...

%F C) a(n,k) = a(n-2,k) + a(n-1,k) for n=4,6,8,...

%F D) a(n,k) = a(n-2,k) + a(n-1,k-1) for n=3,5,7,...

%F Relation A generalized to MV(n,t;r) = P(2n+1,t) + r R(2n,t) for n=1,2,3,... (cf. A078812 and A085478) is the generating relation on p. 229 of Andre-Jeannine for the generalized Morgan-Voyce polynomials, e.g., MV(2,t;r) = p(5,t) + r*p(4,t) = (1 + 3t + t^2) + r*(2 + t) = (1 + 2r) + (3 + r)*t + t^2, so P(n,t) = MV(n-4,t;1) for n=4,6,8,... .

%F The even and odd polynomials are also presented in Trzaska and Ferri.

%F Dropping the initial 0 and re-indexing with initial m=0 gives the row polynomials Fb(m,t) = p(n+1,t) below with o.g.f. G(t,x)/x, starting with Fb(0,t) = 1, Fb(1,t) = 1, Fb(2,t) = 1 + t, and Fb(3,t) = 2 + t.

%F The o.g.f. x/G(x,t) = (1 - (2+t)*x^2 + x^4) / (1 + x - x^2) then generates a sequence of polynomials IFb(t) such that the convolution Sum_{k=0..n} IFb(n-k,t) Fb(k,t) vanishes for n>1 and is one for n=0. These linear polynomials have the basic Fibonacci numbers A000045 as an overall factor:

%F IFb(0,t) = 1

%F IFb(1,t) = -1

%F IFb(2,t) = -t

%F IFb(3,t) = -1 (1-t)

%F IFb(4,t) = 2 (1-t)

%F IFb(5,t) = -3 (1-t)

%F IFb(6,t) = 5 (1-t)

%F IFb(7,t) = -8 (1-t)

%F IFb(8,t) = 13 (1-t)

%F ... .

%F (End)

%e The first few polynomials are:

%e 0

%e 1

%e 1

%e x + 1

%e 2*x + 1

%e x^2 + 3*x + 1

%e 3*x^2 + 4*x + 1

%e ------------------

%e From _Tom Copeland_, Jan 19 2016: (Start)

%e [n]:

%e 0: 0

%e 1: 1

%e 2: 1

%e 3: 1 1

%e 4: 2 1

%e 5: 1 3 1

%e 6: 3 4 1

%e 7: 1 6 5 1

%e 8: 4 10 6 1

%e 9: 1 10 15 7 1

%e 10: 5 20 21 8 1

%e 11: 1 15 35 28 9 1

%e 12: 6 35 56 36 10 1

%e 13: 1 21 70 84 45 11 1

%e (End)

%t Join[{0}, Table[ Select[ CoefficientList[ Fibonacci[n, x], x], 0 < # &], {n, 0, 17}]//Flatten] (* _Clark Kimberling_, Oct 10 2013 and slightly modified by _Robert G. Wilson v_, May 03 2017 *)

%o (Magma) [0] cat [Binomial(Floor(n/2)+k, Floor((n-1)/2-k) ): k in [0..Floor((n-1)/2)], n in [0..17]]; // _G. C. Greubel_, Oct 13 2019

%o (PARI) F(n) = if (n==0, 0, if (n==1, 1, F(n-1) + x*F(n-2)));

%o tabf(nn) = for (n=0, nn, print(Vec(F(n)))); \\ _Michel Marcus_, Feb 10 2020

%Y Upward diagonals sums are A062200. Downward rows are A102427. Row sums are A000045. Row terms reversed = A011973. Also A102428, A102429.

%Y All of A011973, A092865, A098925, A102426, A169803 describe essentially the same triangle in different ways.

%Y Cf. A078812, A085478.

%K easy,nonn,tabf

%O 0,6

%A _Russell Walsmith_, Jan 08 2005

%E Name corrected by _John K. Sikora_, Feb 10 2020