Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Oct 16 2015 23:00:31
%S 1,1,2,4,1,10,3,1,26,12,3,1,72,41,15,3,1,206,143,58,18,3,1,606,492,
%T 231,76,21,3,1,1820,1693,891,335,95,24,3,1,5558,5823,3403,1411,455,
%U 115,27,3,1,17206,20040,12870,5848,2061,591,136,30,3,1,53872,69033,48318,23858,9143,2850,743,158,33,3,1
%N Triangle read by rows: T(n,k) is number of Dyck paths of semilength n having k ascents of length 1 that start at an odd level.
%C T(n,k) is number of Łukasiewicz paths of length n having k level steps at an odd level. A Łukasiewicz path of length n is a path in the first quadrant from (0,0) to (n,0) using rise steps (1,k) for any positive integer k, level steps (1,0) and fall steps (1,-1) (see R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999, p. 223, Exercise 6.19w; the integers are the slopes of the steps). Example: T(3,1)=1 because we have only UHD with exactly one level step at an odd level; here U=(1,1), H=(1,0) and D=(1,-1). Row n has n-1 terms (n>=2). Row sums are the Catalan numbers (A000108). Column 0 yields A102407.
%C T(n,k) is the number of Dyck paths of semilength n with k DUDU's. - I. Tasoulas (jtas(AT)unipi.gr), Feb 19 2006
%H Alois P. Heinz, <a href="/A102405/b102405.txt">Rows n = 0..150, flattened</a>
%H A. Sapounakis, I. Tasoulas and P. Tsikouras, <a href="http://dx.doi.org/10.1016/j.disc.2007.03.005">Counting strings in Dyck paths</a>, Discrete Math., 307 (2007), 2909-2924.
%H <a href="/index/Lu#Lukasiewicz">Index entries for sequences related to Łukasiewicz</a>
%F G.f.: G=G(t, z) satisfies zG^2-(1+z-z^2-tz+tz^2)G+1+z-tz=0.
%e T(4,1) = 3 because we have UDUUD(U)DD, UUD(U)DDUD and UUUDD(U)DD, where U=(1,1), D=(1,-1) and the ascents of length 1 that start at an odd level are shown between parentheses.
%e Triangle starts:
%e 00 : 1;
%e 01 : 1;
%e 02 : 2;
%e 03 : 4, 1;
%e 04 : 10, 3, 1;
%e 05 : 26, 12, 3, 1;
%e 06 : 72, 41, 15, 3, 1;
%e 07 : 206, 143, 58, 18, 3, 1;
%e 08 : 606, 492, 231, 76, 21, 3, 1;
%e 09 : 1820, 1693, 891, 335, 95, 24, 3, 1;
%e 10 : 5558, 5823, 3403, 1411, 455, 115, 27, 3, 1;
%p b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
%p `if`(x=0, 1, expand(b(x-1, y-1, [2, 2, 4, 2][t])
%p +b(x-1, y+1, [1, 3, 1, 3][t])*`if`(t=4, z, 1))))
%p end:
%p T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
%p seq(T(n), n=0..15); # _Alois P. Heinz_, Jun 02 2014
%t b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y-1, {2, 2, 4, 2}[[t]]] + b[x-1, y+1, {1, 3, 1, 3}[[t]]]*If[t == 4, z, 1]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1]]; Table[T[n], {n, 0, 15}] // Flatten (* _Jean-François Alcover_, May 20 2015, after _Alois P. Heinz_ *)
%Y Cf. A000108, A094507 (the same for UDUD), A102404, A102407, A263173.
%K nonn,tabf
%O 0,3
%A _Emeric Deutsch_, Jan 06 2005