login
A102366
Number of subsets of {1,2,...,n} in which exactly half of the elements are less than or equal to sqrt(n).
3
1, 1, 2, 3, 6, 10, 15, 21, 28, 84, 120, 165, 220, 286, 364, 455, 1820, 2380, 3060, 3876, 4845, 5985, 7315, 8855, 10626, 53130, 65780, 80730, 98280, 118755, 142506, 169911, 201376, 237336, 278256, 324632, 1947792, 2324784, 2760681, 3262623, 3838380, 4496388
OFFSET
0,3
COMMENTS
Also number of subsets of [n] in which exactly half of the elements are squares: a(5) = 10: {}, {1,2}, {1,3}, {1,5}, {2,4}, {3,4}, {4,5}, {1,2,3,4}, {1,2,4,5}, {1,3,4,5}. - Alois P. Heinz, Oct 11 2022
LINKS
FORMULA
a(n) = Sum_k C(floor(sqrt(n)),k)*C(n-floor(sqrt(n)),k) = A048093(n) + 1 = a(n-1) + A084919(n-1).
a(n) = binomial(n, floor(sqrt(n))). - Paul D. Hanna, Jun 25 2011
EXAMPLE
a(5) = 10 since the ten subsets of {1,2,3,4,5} are { }, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {1,2, 3,4}, {1,2, 3,5} and {1,2, 4,5}.
PROG
(PARI) {a(n)=if(n<0, 0, binomial(n, sqrtint(n)))} /* Paul D. Hanna */
(PARI) {a(n)=sum(k=0, sqrtint(n), binomial(sqrtint(n), k)*binomial(n-sqrtint(n), k))}
CROSSREFS
Cf. A011782 for number of subsets with an even number of elements.
Cf. A000290.
Sequence in context: A215891 A254033 A356314 * A152452 A217741 A074134
KEYWORD
nonn
AUTHOR
Henry Bottomley, Feb 22 2005
STATUS
approved