login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k), 0 <= k <= n, read by rows: given by [ 1, 0, 3, 0, 5, 0, 7, 0, 9, 0, ...] DELTA [ 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, ...] where DELTA is the operator defined in A084938.
3

%I #25 Jan 22 2020 21:07:13

%S 1,1,0,1,1,0,1,5,1,0,1,18,15,1,0,1,58,129,37,1,0,1,179,877,646,83,1,0,

%T 1,543,5280,8030,2685,177,1,0,1,1636,29658,82610,56285,10002,367,1,0,

%U 1,4916,159742,756218,919615,335162,34777,749,1,0

%N Triangle T(n,k), 0 <= k <= n, read by rows: given by [ 1, 0, 3, 0, 5, 0, 7, 0, 9, 0, ...] DELTA [ 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, ...] where DELTA is the operator defined in A084938.

%C Generalized Eulerian numbers A008292.

%C Reversal of A211399. - _Philippe Deléham_, Feb 12 2013

%H G. C. Greubel, <a href="/A102365/b102365.txt">Table of n, a(n) for the first 50 rows, flattened</a>

%F T(n, k) = (n-k)*T(n-1, k-1) + (2*k+1)*T(n-1, k) with T(0, 0) = 1, T(0, k) = 0 if k > 0, T(n, k) = 0 if k < 0.

%F Sum_{k>=0} T(n, k)*2^k = A001147(n).

%F Sum_{k>=0} T(n, k) = A014307(n). - _Philippe Deléham_, Mar 19 2005

%e Triangle begins:

%e 1;

%e 1, 0;

%e 1, 1, 0;

%e 1, 5, 1, 0;

%e 1, 18, 15, 1, 0;

%e 1, 58, 129, 37, 1, 0; ...

%t T[0, 0] := 1; T[n_, -1] := 0; T[n_, n_] := 0; T[n_, k_] := T[n, k] = (n - k)*T[n - 1, k - 1] + (2*k + 1)*T[n - 1, k]; Join[{1}, Table[If[k < 0, 0, If[k >= n, 0, T[n, k]]], {n, 1, 5}, {k, 0, n}] // Flatten] (* _G. C. Greubel_, Jun 30 2017 *)

%Y Diagonals: A000007, A000012, A050488, A142965, A142966.

%Y Columns: A000012, A000340, A156922, A156923, A156924.

%K nonn,easy,tabl

%O 0,8

%A _Philippe Deléham_, Feb 22 2005