login
Primes p such that the largest prime divisor of p^6 + 1 is less than p.
2

%I #15 Jun 21 2024 06:38:28

%S 30977,69127,104681,109807,114671,141637,146057,160319,160639,170371,

%T 171169,176087,211723,216119,217081,319321,381673,389083,390151,

%U 416219,437401,484609,492257,525571,564713,565241,574127,591601,612173,621259

%N Primes p such that the largest prime divisor of p^6 + 1 is less than p.

%H Amiram Eldar, <a href="/A102328/b102328.txt">Table of n, a(n) for n = 1..1000</a>

%F Solutions to {A006530(p^6+1) < p} where p is a prime number.

%e p = 30977, p^6 + 1 = 883560179055825771003237890 = 2*5*13*37*61*113*181*13921*18517*22189*25741, so the largest prime factor is 25741 < p = 30977.

%t Select[Prime[Range[60000]], Max[PrimeFactorList[1 + #^6]] < # &] (* _Ray Chandler_, Jan 08 2005 *)

%o (PARI) is(k) = isprime(k) && vecmax(factor(k^6+1)[, 1]) < k; \\ _Amiram Eldar_, Jun 21 2024

%Y Cf. A000040, A006530, A065091, A073501, A102327.

%K nonn

%O 1,1

%A _Labos Elemer_, Jan 05 2005

%E Extended by _Ray Chandler_, Jan 08 2005