login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{d divides n} moebius(d) * C(n/d,2).
8

%I #68 Jan 05 2025 19:51:38

%S 0,0,1,3,5,10,11,21,22,33,34,55,46,78,69,92,92,136,105,171,140,186,

%T 175,253,188,290,246,315,282,406,284,465,376,470,424,564,426,666,531,

%U 660,568,820,570,903,710,852,781,1081,760,1155,890,1136,996,1378,963,1420,1140,1422,1246

%N a(n) = Sum_{d divides n} moebius(d) * C(n/d,2).

%C Zero followed by the Moebius transform of A000217. - _R. J. Mathar_, Jan 19 2009

%C Apparently, a(n-1) is the number of periodic complex Horadam orbits with period n, for n>2. - _Nathaniel Johnston_, Oct 04 2013

%C Also apparently, the first differences of A100448 (checked up to n=2000).

%H Alois P. Heinz, <a href="/A102309/b102309.txt">Table of n, a(n) for n = 0..10000</a>

%H Dorin Andrica and Ovidiu Bagdasar, <a href="https://doi.org/10.1007/978-3-030-51502-7">Recurrent Sequences: Key Results, Applications, and Problems</a>, Springer (2020), p. 159.

%H Ovidiu Bagdasar, <a href="/A102309/a102309.pdf">On certain computational and geometric properties of complex Horadam orbits</a>, poster, ANTS 2014.

%H O. D. Bagdasar and P. J. Larcombe, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/51-1/BagdasarLarcombe.pdf">On the characterization of periodic complex Horadam sequences</a>, Fib. Quart. 51 (1) (2013) 28-37.

%H O. D. Bagdasar and P. J. Larcombe, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/51-4/BagdasarLarcombe.pdf">On the Number of Complex Horadam Sequences with a Fixed Period</a>, Fib. Q., 51 (2013), 339-347.

%H Ovidiu D. Bagdasar and Peter J. Larcombe, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/55-4/BagdasarLarcombe05252017.pdf">On the masked periodicity of Horadam sequences: a generator-based approach</a>, Fib. Q., 55 (2017), 332-339.

%H Ovidiu Bagdasar and I.-L. Popa, <a href="https://doi.org/10.1016/j.endm.2016.11.002">On the geometry of certain periodic non-homogeneous Horadam sequences</a>, Electronic Notes in Discrete Mathematics 56 (2016) 7-13.

%F G.f.: Sum_{k>=1} mu(k) * x^(2*k)/(1 - x^k)^3. - _Seiichi Manyama_, May 24 2021

%p with(numtheory):

%p a:= n-> add(mobius(d)*binomial(n/d, 2), d=divisors(n)):

%p seq(a(n), n=0..60); # _Alois P. Heinz_, Feb 18 2013

%t a[n_] := Sum[MoebiusMu[d] Binomial[n/d, 2], {d, Divisors[n]}];

%t a /@ Range[0, 60] (* _Jean-François Alcover_, Feb 04 2020 *)

%o (PARI) a(n) = sumdiv(n, d, moebius(d) * binomial(n/d,2) ); /* _Joerg Arndt_, Feb 18 2013 */

%o (PARI) my(N=66, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, moebius(k)*x^(2*k)/(1-x^k)^3))) \\ _Seiichi Manyama_, May 24 2021

%Y Second column of triangle A020921.

%Y Cf. A008683, A326419.

%K nonn,changed

%O 0,4

%A _Ralf Stephan_, Jan 03 2005