Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 May 20 2015 19:52:36
%S 2,6,6,10,14,10,10,14,14,22,26,22,26,10,30,22,26,34,30,30,30,50,42,42,
%T 46,46,50,42,42,50,46,54,42,42,42,42,38,34,30,38,14,18,18,18,46,54,62,
%U 70,78,78,90,78,66,54,70,66,62,66,58,70,66,86,98,78,78,54,70,70,78,78
%N a(n) = A002144(n) - A002145(n).
%C a(n) = A108546(2*n+1) - A108546(2*n).
%H Ivan Neretin, <a href="/A102261/b102261.txt">Table of n, a(n) for n = 1..30000</a>
%p A002144 := proc(n) option remember ; if n = 1 then RETURN(5) ; fi; for a from procname(n-1)+2 do if isprime(a) and (a mod 4 = 1 ) then RETURN(a) ; fi; od: end; A002145 := proc(n) option remember ; if n = 1 then RETURN(3) ; fi; for a from procname(n-1)+2 do if isprime(a) and (a mod 4 = 3 ) then RETURN(a) ; fi; od: end; A102261 := proc(n) A002144(n)-A002145(n) ; end: seq(A102261(n),n=1..120) ; # _R. J. Mathar_, Feb 07 2009
%t nmax = 70; a1 = Select[Range[1, Prime[3*nmax], 4], PrimeQ]; a3 = Select[Range[3, Prime[3*nmax], 4], PrimeQ]; a[n_] := a1[[n]] - a3[[n]]; Table[a[n], {n, 1, nmax}] (* _Jean-François Alcover_, Dec 17 2013 *)
%K sign,look
%O 1,1
%A _Paul Curtz_, Sep 06 2008
%E Edited by _N. J. A. Sloane_, Sep 06 2008
%E More terms from _R. J. Mathar_, Feb 07 2009