Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 May 01 2023 10:03:41
%S 1,1,5,55,1077,32951,1451723,87054773,6818444405,675900963271,
%T 82717196780955,12248810651651333,2158585005685222491,
%U 446445657799551807541,107087164031952038620481,29487141797206760561836055,9238158011747884080353808245
%N Column 0 of triangular matrix A102220, which equals [2*I - A008459]^(-1).
%C a(n) is the number of ways to form an ordered pair of n-permutations and then choose a subset of its common descent set. Cf. A192721. - _Geoffrey Critzer_, Apr 29 2023
%H Alois P. Heinz, <a href="/A102221/b102221.txt">Table of n, a(n) for n = 0..248</a>
%F a(n) = Sum_{k=0..n-1} C(n, k)^2*a(k) for n>0, with a(0)=1.
%F a(n) = A102220(n+k, k)/C(n+k, k)^2 for k>=0.
%F Sum_{n>=0} a(n)*x^n/n!^2 = 1/(2-BesselI(0,2*sqrt(x))). - _Vladeta Jovovic_, Jul 17 2006
%F a(n) ~ c * (n!)^2 / r^n, where r = 0.81712266563155429332453954757369795... is the root of the equation BesselJ(0, 2*I*sqrt(x))=2, and c = 0.833570458821600548332410448635741072476086046022299770387... = 1/(sqrt(r) * BesselI(1, 2*sqrt(r))). - _Vaclav Kotesovec_, Mar 02 2014, updated Apr 01 2018
%F From _Geoffrey Critzer_, Apr 29 2023: (Start)
%F Sum_{n>=0} a(n)*z^n/(n!)^2 = 1/(2-E(z)) where E(z) = Sum_{n>=0} z^n/(n!)^2.
%F a(n) = Sum_{k=0..n-1} A192721(n,k)*2^k. (End)
%p b:= proc(n) option remember; `if`(n=0, 1,
%p add(b(n-i)*binomial(n, i)/i!, i=1..n))
%p end:
%p a:= n-> b(n)*n!:
%p seq(a(n), n=0..20); # _Alois P. Heinz_, May 11 2016
%t Rest[CoefficientList[Series[1/(2-BesselJ[0, 2*I*Sqrt[x]]), {x, 0, 20}], x] * Range[0, 20]!^2] (* _Vaclav Kotesovec_, Mar 02 2014 *)
%t m = 20; CoefficientList[1/(2 - BesselI[0, 2 Sqrt[x]]) + O[x]^m, x] Range[0, m - 1]!^2 (* _Jean-François Alcover_, Jun 11 2019, after _Vladeta Jovovic_ *)
%t b[n_] := b[n] = If[n==0, 1, Sum[b[n-i] Binomial[n, i]/i!, {i, 1, n}]];
%t a[n_] := b[n] n!;
%t a /@ Range[0, 20] (* _Jean-François Alcover_, Dec 03 2020, after _Alois P. Heinz_ *)
%o (PARI) a(n)=if(n==0,1,sum(k=0,n-1,binomial(n,k)^2*a(k)))
%o (Sage)
%o L = taylor(1/(1-x*hypergeometric((1,),(2,2),x)),x,0,14).list()
%o [factorial(i)^2*c for (i,c) in enumerate(L)] # _Peter Luschny_, Jul 28 2015
%Y Cf. A000275, A008459, A102220, A102222, A192721.
%Y Row sums of A192722.
%Y Column k=2 of A326322.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Dec 31 2004
%E Content moved from A192723 to this sequence by _Alois P. Heinz_, Sep 11 2019