login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102169
a(n) = the number of sequences of n integers such that each integer is in the range 0..4 and the sum of the integers is in the range 0..24.
2
5, 25, 125, 625, 3125, 15625, 78005, 384550, 1829850, 8209410, 34219650, 131875900, 470597480, 1562441800, 4855374080, 14208711350, 39381411950, 103917328350, 262270328730, 635683810740, 1484963848500, 3353799866500
OFFSET
1,1
COMMENTS
Changing 4 to 2 and 24 to 3 gives A105163. - Don Reble, Aug 14 2012
LINKS
FORMULA
From Michael David Hirschhorn, Aug 10 2012: (Start)
a(n) is the sum of the coefficients of 1, x, x^2, ..., x^24 in (1+x+x^2+x^3+x^4)^n = (1-x^5)^n/(1-x)^n.
But this is equal to the coefficient of x^24 in (1-x^5)^n/(1-x)^(n+1) = Sum_{k=0..n} (-1)^k binomial(n,k) x^5k times Sum_{m>=0} binomial(n+m,m) x^m.
Hence a(n) = Sum_{k=0..4} (-1)^k binomial(n,k) binomial(n+24-5k,n).
For example, if n=2, a(2) = 325-420+120 = 25. (End)
G.f.: -x*(x^24 -25*x^23 +300*x^22 -2300*x^21 +12650*x^20 -53060*x^19 +175980*x^18 -472300*x^17 +1042375*x^16 -1915575*x^15 +2962780*x^14 -3894200*x^13 +4384980*x^12 -4251000*x^11 +3547700*x^10 -2533840*x^9 +1532975*x^8 -776575*x^7 +325880*x^6 -111900*x^5 +30750*x^4 -6500*x^3 +1000*x^2 -100*x +5) / (x-1)^25. - Colin Barker, Nov 01 2014
EXAMPLE
a(2)=25 because there are five choices for either integer.
MATHEMATICA
Table[Sum[(-1)^k * Binomial[n, k] * Binomial[n+24-5k, n], {k, 0, 4}], {n, 1, 20}] (* Vaclav Kotesovec, Nov 01 2014 after Michael David Hirschhorn *)
CROSSREFS
Cf. A105163.
Sequence in context: A216126 A335506 A129066 * A060391 A000351 A050735
KEYWORD
nonn,easy
AUTHOR
Tony Berard (TheMathDude(AT)worldnet.att.net), Feb 16 2005
EXTENSIONS
Edited by Don Reble, Mar 19 2007
STATUS
approved