OFFSET
1,1
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
FORMULA
From Michael David Hirschhorn, Aug 10 2012: (Start)
a(n) is the sum of the coefficients of 1, x, x^2, ..., x^24 in (1+x+x^2+x^3+x^4)^n = (1-x^5)^n/(1-x)^n.
But this is equal to the coefficient of x^24 in (1-x^5)^n/(1-x)^(n+1) = Sum_{k=0..n} (-1)^k binomial(n,k) x^5k times Sum_{m>=0} binomial(n+m,m) x^m.
Hence a(n) = Sum_{k=0..4} (-1)^k binomial(n,k) binomial(n+24-5k,n).
For example, if n=2, a(2) = 325-420+120 = 25. (End)
G.f.: -x*(x^24 -25*x^23 +300*x^22 -2300*x^21 +12650*x^20 -53060*x^19 +175980*x^18 -472300*x^17 +1042375*x^16 -1915575*x^15 +2962780*x^14 -3894200*x^13 +4384980*x^12 -4251000*x^11 +3547700*x^10 -2533840*x^9 +1532975*x^8 -776575*x^7 +325880*x^6 -111900*x^5 +30750*x^4 -6500*x^3 +1000*x^2 -100*x +5) / (x-1)^25. - Colin Barker, Nov 01 2014
EXAMPLE
a(2)=25 because there are five choices for either integer.
MATHEMATICA
Table[Sum[(-1)^k * Binomial[n, k] * Binomial[n+24-5k, n], {k, 0, 4}], {n, 1, 20}] (* Vaclav Kotesovec, Nov 01 2014 after Michael David Hirschhorn *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Tony Berard (TheMathDude(AT)worldnet.att.net), Feb 16 2005
EXTENSIONS
Edited by Don Reble, Mar 19 2007
STATUS
approved