login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = sigma(10^n - 1), where sigma(n) is the sum of positive divisors of n.
9

%I #15 Jan 05 2024 17:11:54

%S 13,156,1520,15912,148512,2042880,14508000,162493344,1534205464,

%T 16203253248,144451398000,2063316971520,14903272088640,

%U 158269280832000,1614847741624320,17205180696931968,144444514193267496

%N a(n) = sigma(10^n - 1), where sigma(n) is the sum of positive divisors of n.

%H Max Alekseyev, <a href="/A102146/b102146.txt">Table of n, a(n) for n = 1..352</a> (terms 1..322 from Ray Chandler)

%H C. Caldwell, <a href="https://t5k.org/glossary/page.php?sort=SigmaFunction">Sigma function</a>.

%F a(n) = A000203(A002283(n)). - _Ray Chandler_, Apr 22 2017

%t DivisorSigma[1,10^Range[20]-1] (* _Harvey P. Dale_, Jan 05 2012 *)

%o (PARI) a(n) = sigma(10^n-1); \\ _Michel Marcus_, Apr 22 2017

%Y Cf. A000203, A001270, A002283, A003020, A005422, A046053, A046107, A046412, A046415, A046416, A046417, A046418, A046419, A046420, A057951, A059892, A061075, A070528, A070529, A081317, A081318, A085035, A095370, A095413, A095414, A095417, A095418, A102347, A102380, A112505, A147556, A295503, A366669.

%K nonn

%O 1,1

%A Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Feb 14 2005