login
Iccanobirt numbers (9 of 15): a(n) = R(a(n-1) + a(n-2) + R(a(n-3))), where R is the digit reversal function A004086.
6

%I #8 Dec 19 2015 00:27:24

%S 0,0,1,1,2,4,7,31,24,26,36,401,994,8541,9369,90481,803101,122309,

%T 918349,6691411,1892158,8837259,38317811,15086655,45813926,46917727,

%U 407993841,224348715,25411507,629951893,2286023711,6507846892,9250302919

%N Iccanobirt numbers (9 of 15): a(n) = R(a(n-1) + a(n-2) + R(a(n-3))), where R is the digit reversal function A004086.

%C Digit reversal variation of tribonacci numbers A000073.

%C Inspired by Iccanobif numbers: A001129, A014258-A014260.

%F a(n) = A004086(A102111(n)).

%t R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[a[n-1]+a[n-2]+R[a[n-3]]];Table[a[n], {n, 0, 40}]

%Y Cf. A102111-A102125.

%K nonn,base,easy

%O 0,5

%A _Jonathan Vos Post_ and _Ray Chandler_, Dec 30 2004