login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of k-matchings in the C_n X P_2 graph (C_n is the cycle graph on n vertices and P_2 is the path graph on 2 vertices).
2

%I #14 Aug 25 2019 13:47:55

%S 1,6,5,1,9,18,4,1,12,42,44,9,1,15,75,145,95,11,1,18,117,336,420,192,

%T 20,1,21,168,644,1225,1085,371,29,1,24,228,1096,2834,3880,2588,696,49,

%U 1,27,297,1719,5652,10656,11097,5823,1278,76,1,30,375,2540,10165,24626,35645,29380,12535,2310,125

%N Triangle read by rows: T(n,k) is the number of k-matchings in the C_n X P_2 graph (C_n is the cycle graph on n vertices and P_2 is the path graph on 2 vertices).

%C Row n contains n+1 terms.

%C Equivalently, the n-th row gives the coefficients of the matching-generating polynomial of the n-prism graph. - _Eric W. Weisstein_, Apr 03 2018

%H H. Hosoya and A. Motoyama, <a href="http://dx.doi.org/10.1063/1.526778">An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices</a>, J. Math. Physics 26 (1985) 157-167 (eq. (19) and Table IV).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Matching-GeneratingPolynomial.html">Matching-Generating Polynomial</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrismGraph.html">Prism Graph</a>

%F G.f.: -z^2*(5t^4*z^2-1+t^4*z^3+t^5*z^3-6t-5t^2-2tz-7zt^2+zt^3-t^2*z^2)/[(1+tz)(t^3*z^3-tz^2-2tz-z+1)].

%F The row generating polynomials A[n] satisfy A[n]=(1+t)A[n-1]+2t(1+t)A[n-2]+ t^2*(1-t)A[n-3]-t^4*A[n-4] with A[2]=1+6t+5t^2, A[3]=1+9t+18t^2+4t^3, A[4]=1+12t+42t^2+44t^3+9t^4 and A[5]=1+15t+75t^2+145t^3+95t^4+11t^5.

%e T(3,3)=4 because in the graph C_3 X P_2 with vertex set {A,B,C,A',B',C'} and edge set {AB,AC,BC, A'B',A'C',B'C',AA',BB',CC'} we have the following

%e 3-matchings: {AA',BB',CC'}, {AA',BC,B'C'}, {BB',AC,A'C'} and {CC',AB,A'B'} (as a matter of fact, these are perfect matchings).

%e Triangle starts:

%e 1, 6, 5;

%e 1, 9, 18, 4;

%e 1, 12, 42, 44, 9;

%e 1, 15, 75, 145, 95, 11;

%p G:=-z^2*(5*t^4*z^2-1+z^3*t^4+z^3*t^5-6*t-5*t^2-2*z*t-7*z*t^2+z*t^3-z^2*t^2)/(z*t+1)/(z^3*t^3-z^2*t-2*z*t-z+1) : Gser:=simplify(series(G,z=0,13)): for n from 2 to 11 do P[n]:=coeff(Gser,z^n) od:for n from 2 to 11 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form

%t CoefficientList[LinearRecurrence[{1 + x, 2 x (1 + x), -(-1 + x) x^2, -x^4}, {1 + x, 1 + 6 x + 5 x^2, 1 + 9 x + 18 x^2 + 4 x^3, 1 + 12 x + 42 x^2 + 44 x^3 + 9 x^4}, {2, 10}], x] // Flatten (* _Eric W. Weisstein_, Apr 03 2018 *)

%t CoefficientList[CoefficientList[Series[-( -1 - 6 x - 5 x^2 - 2 x z - 7 x^2 z + x^3 z - x^2 z^2 + 5 x^4 z^2 + x^4 z^3 + x^5 z^3)/((1 + x z) (1 - z - 2 x z - x z^2 + x^3 z^3)), {z, 0, 10}], z], x] // Flatten (* _Eric W. Weisstein_, Apr 03 2018 *)

%Y Cf. A102080, A068397.

%K nonn,tabf

%O 2,2

%A _Emeric Deutsch_, Dec 29 2004