login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101992
Numerator of Sum_{i=2..n} (-1)^i/(i*phi(i)).
2
1, 1, 11, 49, 59, 131, 559, 14533, 15289, 33031, 34417, 441877, 452173, 2224829, 9034451, 152504587, 155227307, 2932982513, 2967901397, 2945730677, 2971126229, 6189267977, 6250111487, 155668689479, 156604743479, 1404034379311, 1411857116311, 5835711932717
OFFSET
2,3
COMMENTS
I conjecture that there exists a limit for Sum_{i>=2} (-1)^i/(i*phi(i)) which is ca. 0.558.
LINKS
Eric Weisstein's World of Mathematics, Totient Function.
FORMULA
a(n) = numerator( Sum_{i=2..n} (-1)^i/(i*phi(i)) ).
Sum_{i>=2} (-1)^i/(i*phi(i)) = 1 - (1/5) * A065484 = 0.5592286807... . - Amiram Eldar, Nov 21 2022
EXAMPLE
a(4) = 11 because Sum_{i=2..4} (-1)^i/(i*phi(i)) = 1/2 - 1/6 + 1/8 = 11/24, and the numerator of 11/24 is 11.
MATHEMATICA
(* Generating the sum : *) f[n_Integer]/; n >= 2 := Sum[(-1)^i/(i*EulerPhi[i]), {i, 2, n}]; (* Getting the numerator: *) a[n_Integer]/; n >=2 := Numerator[f[n]]; (* Generating the sequence : *) Table[a[n], {n, 2, 20}]
Accumulate[Table[(-1)^n/(n EulerPhi[n]), {n, 2, 30}]]//Numerator (* Harvey P. Dale, Mar 19 2023 *)
CROSSREFS
Cf. A000010 (phi), A002618, A065484.
Sequence in context: A211058 A239460 A226676 * A356792 A160671 A297521
KEYWORD
frac,nonn
AUTHOR
Orges Leka (oleka(AT)students.uni-mainz.de), Dec 23 2004
EXTENSIONS
More terms from Amiram Eldar, Jul 13 2019
STATUS
approved