login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Indices of primes in sequence defined by A(0) = 21, A(n) = 10*A(n-1) + 41 for n > 0.
1

%I #14 Jan 17 2019 13:44:06

%S 1,2,4,5,11,185,434,1745,3446,18797,70208

%N Indices of primes in sequence defined by A(0) = 21, A(n) = 10*A(n-1) + 41 for n > 0.

%C Numbers n such that (230*10^n - 41)/9 is prime.

%C Numbers n such that digit 2 followed by n >= 0 occurrences of digit 5 followed by digit 1 is prime.

%C Numbers corresponding to terms <= 434 are certified primes.

%C a(12) > 10^5. - _Robert Price_, Mar 04 2015

%D Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/2/25551.htm#prime">Prime numbers of the form 255...551</a>.

%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.

%F a(n) = A098930(n) - 1.

%e 255551 is prime, hence 4 is a term.

%o (PARI) a=21;for(n=0,1800,if(isprime(a),print1(n,","));a=10*a+41)

%o (PARI) for(n=0,1800,if(isprime((230*10^n-41)/9),print1(n,",")))

%Y Cf. A000533, A002275, A098930.

%K nonn,hard,more

%O 1,2

%A _Klaus Brockhaus_ and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 23 2004

%E 3446 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008

%E a(10)-a(11) from _Robert Price_, Mar 04 2015