Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Mar 01 2022 10:57:06
%S 1,-1,1,0,-1,1,0,-2,3,-1,-3,6,-4,-4,12,-10,-5,23,-25,-2,43,-57,12,74,
%T -124,56,120,-258,172,170,-516,454,187,-989,1095,40,-1811,2487,-604,
%U -3128,5375,-2567,-4991,11140,-7704,-6976,22164,-20062,-7220,42288,-48020,-36,76928,-108334,29476,131898,-233020,117166
%N G.f. satisfies: A(x) = 1/(1 + x*A(x^2)) and also the continued fraction: 1 + x*A(x^3) = [1; 1/x, 1/x^2, 1/x^4, 1/x^8, ..., 1/x^(2^(n-1)), ...].
%C Sequence appears to have a rational g.f. - _Ralf Stephan_, May 17 2007
%C The conjecture is wrong. The g.f. is dependent on the number of terms. - _Johannes W. Meijer_, Aug 08 2011
%F G.f.: 1/(1 + x/(1 + x^2/(1 + x^4/(1 + x^8/(1 + ...))))) (continued fraction). - _Joerg Arndt_, Oct 19 2012
%F G.f. A(x) = 1/B(x) where B(x) is the g.f. of A218031. - _Joerg Arndt_, Oct 19 2012
%F a(0) = 1; a(n) = -Sum_{k=0..floor((n-1)/2)} a(k) * a(n-2*k-1). - _Ilya Gutkovskiy_, Mar 01 2022
%p nmax:=57: kmax:=nmax: for k from 0 to kmax do A:= proc(x): add(A101912(n)*x^n, n=0..k) end: f(x):=series(1/(1 + x*A(x^2)),x,k+1); for n from 0 to k do x(n):=coeff(f(x),x,n) od: A101912(k):=x(k): od: seq(A101912(n), n=0..nmax); # _Johannes W. Meijer_, Aug 08 2011
%t m = 58; A[_] = 0; Do[A[x_] = 1/(1 + x A[x^2]) + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] (* _Jean-François Alcover_, Nov 03 2019 *)
%o (PARI) {a(n)=local(A);A=1-x;for(i=1,n\2+1, A=1/(1+x*subst(A,x,x^2)+x*O(x^n)));polcoeff(A,n,x)}
%o (PARI) {a(n)=local(M=contfracpnqn(concat(1, vector(#binary(n)+1,n,1/x^(2^(n-1)))))); polcoeff(M[1,1]/M[2,1]+x*O(x^(3*n+1)),3*n+1)}
%Y Cf. A101913, A101914, A101915, A101916, A101917, A101918.
%K sign
%O 0,8
%A _Paul D. Hanna_, Dec 20 2004