login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101842 Triangle read by rows: T(n,k), for k=-n..n-1, is the scaled (by 2^n n!) probability that the sum of n uniform [-1, 1] variables is between k and k+1. 3
1, 1, 1, 3, 3, 1, 1, 7, 16, 16, 7, 1, 1, 15, 61, 115, 115, 61, 15, 1, 1, 31, 206, 626, 1056, 1056, 626, 206, 31, 1, 1, 63, 659, 2989, 7554, 11774, 11774, 7554, 2989, 659, 63, 1, 1, 127, 2052, 13308, 47349, 105099, 154624, 154624, 105099, 47349, 13308, 2052, 127, 1, 1, 255, 6297, 56935, 274677 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Equivalently, T(n,k)/n! is the n-dimensional volume of the portion of the n-dimensional hypercube [-1,1]^n cut by the (n-1)-dimensional hyperplanes x_1 + x_2 + ... x_n = k, x_1 + x_2 + ... x_n = k+1.

The analogous triangle for the interval [0,1] is that of the Eulerian numbers, A008292.

This is the distribution of the flag-descent (fdes) statistic in signed permutations, as introduced by Adin, Brenti, Roichman. The link between fdes and portions of hypercubes follows an argument adapted from Stanley. [Matthieu Josuat-Vergès, Apr 25 2011]

T(n,n) = A011818(n), the normalized volume of center slice of n-dimensional cube. - Paul D. Hanna, Jan 03 2017

REFERENCES

Peter Doyle, Myths about card shuffling, talk given at DIMACS Workshop on Puzzling Mathematics and Mathematical Puzzles: a Gathering in Honor of Peter Winkler's 60th Birthday, Rutgers University, Jun 08, 2007

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..2070 for rows 1..45 of flattened triangle

R. M. Adin, F. Brenti and Y. Roichman, Descent numbers and major indices for the hyperoctahedral group, Adv. Appl. Math. 27 (2001), 210-224.

R. Stanley, Eulerian partitions of a unit hypercube, in Higher Combinatorics (M. Aigner, ed.), Reidel, Dordrecht/Boston, 1977, p. 49.

FORMULA

T(n,k) = (n-k) * T(n-1,k-1) + T(n-1,k) + (n+k+1)*T(n-1,k+1).

With the column index k starting at 0 the table entries appear to be given by t(n,k) = Sum_{i = 0..k} A173018(n,i)*binomial(n,k-i), n >= 1. - Peter Bala, Jul 17 2012

E.g.f.: -1 + (1-y) / (1 - y*exp( (1-y^2)*x )). - Paul D. Hanna, Jan 03 2017

p(n, x) = n! * (x - 1)^n * [z^n] (1 - x)/(exp((x + 1)*z) - x) defines a sequence of polynomials. p(n, x) = (x + 1)^n*A(n, x) where A(n, x) are the Eulerian polynomials as defined by A008292. The coefficients of these polynomials are the T(n, k) if enumerated for n >= 0 and 0 <= k <= 2*n - 1 if n > 0 and T(0,0) = 1. - Peter Luschny, Jun 24 2019

EXAMPLE

Triangle of T(n,k), k=-n..n-1 begins:

1, 1

1, 3, 3, 1

1, 7, 16, 16, 7, 1

1, 15, 61, 115, 115, 61, 15, 1

1, 31, 206, 626, 1056, 1056, 626, 206, 31, 1

1, 63, 659, 2989, 7554, 11774, 11774, 7554, 2989, 659, 63, 1

The sequence of polynomials starts:

p(0, x) = 1

p(1, x) = x + 1

p(2, x) = x^3 + 3*x^2 + 3*x + 1

p(3, x) = x^5 + 7*x^4 + 16*x^3 + 16*x^2 + 7*x + 1

p(4, x) = x^7 + 15*x^6 + 61*x^5 + 115*x^4 + 115*x^3 + 61*x^2 + 15*x + 1

MAPLE

gf := (1 - x)/(exp((x + 1)*z) - x): ser := series(gf, z, 12):

for n from 0 to 6 do p := simplify(n!*(x - 1)^n*coeff(ser, z, n));

print(PolynomialTools:-CoefficientList(p, x)) od: # Peter Luschny, Jun 24 2019

MATHEMATICA

T[n_, k_] /; -n <= k <= n-1 := T[n, k] = (n-k) T[n-1, k-1] + T[n-1, k] + (n+k+1) T[n-1, k+1]; T[1, -1] = T[1, 0] = 1; T[_, _] = 0;

Table[T[n, k], {n, 1, 8}, {k, -n, n-1}] (* Jean-François Alcover, Jun 27 2019 *)

PROG

(PARI) {T(n, k) = polcoeff( n!*polcoeff( -1 + (1-y) / (1 - y*exp( (1-y^2)*x +x*O(x^n) )) , n, x), k, y)}

for(n=1, 10, for(k=1, 2*n, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Jan 03 2017

CROSSREFS

Cf. A101845, A102012, A011818, A173018.

See also A008292 (Eulerian numbers).

Sequence in context: A196601 A196578 A196809 * A196786 A196746 A196904

Adjacent sequences: A101839 A101840 A101841 * A101843 A101844 A101845

KEYWORD

nonn,tabf

AUTHOR

David Applegate, based on Peter Doyle's talk, Jun 10 2007

EXTENSIONS

Terms a(57) and beyond from Paul D. Hanna, Jan 03 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 2 01:40 EDT 2023. Contains 361723 sequences. (Running on oeis4.)