login
A101752
Table (read by rows) giving the coefficients of sum formulas of n-th Left factorials (A003422).
7
1, 0, 1, 5, -16, 8, 69, -767, 1314, 117, 1774, -30405, 78914, 69024
OFFSET
1,4
COMMENTS
The k-th row (k>=1) contains T(i,k) for i=1 to k+1, where k=[2*n+1+(-1)^(n-1)]/4 and T(i,k) satisfies !n = Sum_{i=1..k+1} T(i,k) * n^(k-i+1) / k!.
EXAMPLE
!7 = 874; substituting n=7 in the formula of the k-th row we obtain k=4 and the coefficients T(i,4) will be the following: 117,1774,-30405,78914,69024, => !7 = [ 117*7^4 +1774*7^3 -30405*7^2 +78914*7 +69024 ]/4! = 874.
CROSSREFS
Cf. A094216.
Sequence in context: A043295 A063927 A195869 * A332474 A195866 A363342
KEYWORD
sign,tabf,more,uned
AUTHOR
STATUS
approved