login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Indices of primes in sequence defined by A(0) = 41, A(n) = 10*A(n-1) + 71 for n > 0.
1

%I #13 Jan 17 2019 13:44:06

%S 0,462

%N Indices of primes in sequence defined by A(0) = 41, A(n) = 10*A(n-1) + 71 for n > 0.

%C Numbers n such that (440*10^n - 71)/9 is prime.

%C Numbers n such that digit 4 followed by n >= 0 occurrences of digit 8 followed by digit 1 is prime.

%C Number corresponding to term 462 is a certified prime. No further terms up to 5000.

%C a(3) > 2*10^5. - _Robert Price_, Oct 15 2015

%D Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/4/48881.htm#prime">Prime numbers of the form 488...881</a>.

%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.

%F a(n) = A102997(n) - 1.

%e 41 is prime, hence 0 is a term.

%o (PARI) a=41;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a+71)

%o (PARI) for(n=0,1500,if(isprime((440*10^n-71)/9),print1(n,",")))

%Y Cf. A000533, A002275, A102997.

%K nonn,bref,hard,more

%O 1,2

%A _Klaus Brockhaus_ and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 14 2004