login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of partial sums of a certain series.
5

%I #25 Mar 01 2022 07:25:58

%S 1,39,241,34883,14039,1516871,7601151,875425657,7887002813,

%T 7095769757767,14199583385459,75087685321529,75113436870869,

%U 927229349730873529,927436191807263569,305182576081725442901,23479178371879154033,37713848011377144613,37717984058802320713,135759786815564675620247

%N Numerator of partial sums of a certain series.

%C The denominators are given in A101628.

%C Second member (m=3) of a family defined in A101028.

%C The limit s=lim(s(n),n->infinity) with the s(n) defined below equals 8*sum(zeta(2*k+1)/3^(2*k),k=1..infinity) with Euler's (or Riemann's) zeta function. This limit is 12*(log(3)-1) = 1.18334746...; see the Abramowitz-Stegun (given in A101028) reference p. 259, eq. 6.3.15 with z=1/3 together with p. 258.

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H Wolfdieter Lang, <a href="/A101627/a101627.txt">Rationals s(n) and more.</a>

%F a(n)=numerator(s(n)) with s(n)=24*sum(1/((3*k-1)*(3*k)*(3*k+1)), k=1..n).

%e s(3)= 24*(1/(2*3*4)+ 1/(5*6*7) + 1/(8*9*10)) = 241/210, hence a(3)=241 and A101628(3)=210.

%t Numerator[Accumulate[Table[8/(9k^3-k),{k,20}]]]

%o (PARI) a(n) = numerator(24*sum(k=1, n, 1/((3*k-1)*(3*k)*(3*k+1))));

%Y Cf. A101028 (m=2), A101629 (m=4), A101631 (m=5).

%Y Cf. A101628 (denominators).

%K nonn,frac,easy

%O 1,2

%A _Wolfdieter Lang_, Dec 23 2004

%E More terms from _Michel Marcus_, Mar 01 2022