Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Nov 14 2017 08:44:21
%S 0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,2,0,0,1,1,0,1,0,1,0,0,
%T 0,2,0,0,0,2,0,1,0,1,1,0,0,2,0,1,0,1,0,2,0,2,0,0,0,3,0,0,1,1,0,1,0,1,
%U 0,1,0,3,0,0,1,1,0,1,0,2,1,0,0,3,0,0,0,2,0,3,0,1,0,0,0,2,0,1,1,2,0,1,0,2,1
%N a(n) = number of divisors of n that have exactly three (not necessarily distinct) prime factors.
%C This is the inverse Moebius transform of A101605. If n = (p1^e1)*(p2^e2)* ... * (pj^ej) then a(n) = |{k: ek>=3}| + ((j-1)/2)*|{k: ek>=2}| + C(j,3). The first term is the number of distinct cubes of primes in the factors of n (the first way of finding a 3-almost prime). The second term is the number of distinct squares of primes, each of which can be multiplied by any of the other distinct primes, halved to avoid double-counts (the second way of finding a 3-almost prime). The third term is the number of distinct products of 3 distinct primes, which is the number of combinations of j primes taken 3 at a time, A000292(j), (the third way of finding a 3-almost prime).
%D Hardy, G. H. and Wright, E. M. Section 17.10 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.
%H Antti Karttunen, <a href="/A101606/b101606.txt">Table of n, a(n) for n = 1..10000</a>
%H E. A. Bender and J. R. Goldman, <a href="https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/BenderGoldman.pdf">On the Applications of Moebius Inversion in Combinatorial Analysis</a>, Amer. Math. Monthly 82, 789-803, 1975.
%H M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AlmostPrime.html">Almost Prime</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MoebiusTransform.html">Moebius Transform</a>.
%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F If n = (p1^e1 * p2^e2 * ... * pj^ej) for primes p1, p2, ..., pj and integer exponents e1, e2, ..., ej, then a(n) = a(n) = |{k: ek>=3}| + ((j-1)/2)*|{k: ek>=2}| + C(j, 3). where C(j, 3) is the binomial coefficient A000292(j).
%F a(n) = Sum_{d|n} A101605(d). - _Antti Karttunen_, Jul 23 2017
%e a(60) = 3 because of all the divisors of 60 only these three are terms of A014612: 12 = 2 * 2 * 3; 20 = 2 * 2 * 5; 30 = 2 * 3 * 5.
%p isA014612 := proc(n) option remember ; RETURN( numtheory[bigomega](n) = 3) ; end: A101606 := proc(n) a :=0 ; for d in numtheory[divisors](n) do if isA014612(d) then a := a+1 ; fi; od: a ; end: for n from 1 to 120 do printf("%d,",A101606(n)) ; od: # _R. J. Mathar_, Jan 27 2009
%t a[n_] := DivisorSum[n, Boole[PrimeOmega[#] == 3]&];
%t Array[a, 105] (* _Jean-François Alcover_, Nov 14 2017 *)
%o (PARI) A101606(n) = sumdiv(n,d,(3==bigomega(d))); \\ _Antti Karttunen_, Jul 23 2017
%Y Cf. A101605, A014612, A001358, A064911, A001221, A000005, A000010, A004018, A000292.
%K easy,nonn
%O 1,24
%A _Jonathan Vos Post_, Dec 09 2004
%E a(48) replaced with 2 and a(76) replaced with 1 by _R. J. Mathar_, Jan 27 2009
%E Name changed by _Antti Karttunen_, Jul 23 2017