Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 08 2022 08:45:16
%S 1,2,4,10,11,22,74,100,121,172,646,2014,2683,11699,19624
%N Indices of primes in sequence defined by A(0) = 63, A(n) = 10*A(n-1) - 17 for n > 0.
%C Numbers n such that (550*10^n + 17)/9 is prime.
%C Numbers n such that digit 6 followed by n >= 0 occurrences of digit 1 followed by digit 3 is prime.
%C Numbers corresponding to terms <= 646 are certified primes.
%C a(16) > 10^5 - _Robert Price_, Sep 09 2015
%D Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
%H Makoto Kamada, <a href="https://stdkmd.net/nrr/6/61113.htm#prime">Prime numbers of the form 611...113</a>.
%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.
%F a(n) = A103027(n) - 1.
%e 611113 is prime, hence 4 is a term.
%t Select[Range[0, 100000], PrimeQ[(550*10^# + 17)/9] &] (* _Robert Price_, Sep 09 2015 *)
%o (PARI) a=63;for(n=0,1000,if(isprime(a),print1(n,","));a=10*a-17)
%o (PARI) for(n=0,1000,if(isprime((550*10^n+17)/9),print1(n,",")))
%o (Magma) [n: n in [0..500]| IsPrime((550*10^n + 17) div 9)]; // _Vincenzo Librandi_, Sep 10 2015
%Y Cf. A000533, A002275, A103027.
%K nonn,hard,more
%O 1,2
%A _Klaus Brockhaus_ and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 06 2004
%E More terms from _Stefan Steinerberger_, May 06 2007
%E a(14)-a(15) from Kamada data by _Ray Chandler_, Apr 30 2015