login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Areas of primitive Pythagorean triangles which are palindromes.
1

%I #16 Jun 07 2024 14:25:43

%S 6,63336,474474,666666,4383834,43177134,460962269064,60471399317406,

%T 60490233209406,643869171968346,6708875775788076,44703479297430744,

%U 608857707707758806,44523865177156832544,683665820959028566386

%N Areas of primitive Pythagorean triangles which are palindromes.

%C Other parts of the n-th triangle are {m,n}, {a,b,c}:

%C a(1): {1,2}, {3,4,5};

%C a(2): {8,21}, {377,336,505};

%C a(3): {1,78}, {6083,156,6085};

%C a(4): {26,37}, {693,1924,2045};

%C a(5): {49,62}, {1443,6076,6245};

%C a(6): {11,158}, {24843,3476,25085};

%C a(7): {2376,2393}, {81073,11371536,11371825};

%C a(8): {4569,4858}, {2724403,44392404,44475925};

%C a(9): {2974,3773}, {5390853,22441804,23080205};

%C a(10): {5402,6829}, {17453637,73780516,75816845};

%C a(11): {121,38132}, {1454034783,9227944,1454064065};

%C a(12): {28407,29336}, {53643247,1666695504,1667558545};

%C a(13): {16593,35986}, {1019664547,1194231396,1570319845};

%C a(14): {3168,241339}, {58234476697,1529123904,58254549145};

%C a(15): {160034,213573}, {20002545173,68357882964,71224307485}.

%F Intersection of A002113 and A024365. - _M. F. Hasler_, Jun 06 2024

%e 666666 is a member as it is a palindromic number and is the area of a primitive Pythagorean triangle with legs a=693 & b=1924 and hypotenuse c=2045.

%t lst = {}; Do[ If[ GCD[m, n] == 1, a = IntegerDigits[m*n^3 - n*m^3]; If[ Reverse[a] == a, lst = Sort[ AppendTo[ lst, a]]; Print[{n^2 - m^2, 2m*n, n^2 + m^2, m*n^3 - n*m^3}]]], {n, 55000}, {m, If[ EvenQ[n], 1, 2], n - 1, 2}]; lst (* _Robert G. Wilson v_, Jan 25 2005 *)

%o (PARI) for(n=2,oo, is_A024365(a=A002113(n)) && print1(a", ")) \\ Could be made to a function returning, e.g., the n-th row := the n-digit terms. - _M. F. Hasler_, Jun 06 2024

%Y Cf. A101450.

%Y Cf. A002113, A024365.

%K nonn,base

%O 1,1

%A _Zak Seidov_, Jan 18 2005

%E a(8) & a(10) - a(13) from _Robert G. Wilson v_, Jan 25 2005

%E a(14) and a(15) from _Ray Chandler_, Feb 10 2013