Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Nov 18 2024 15:59:07
%S 1,4,24,196,2016,24976,361792,5997872,111969552,2324081728,
%T 53089540992,1323476327488,35752797376128,1040367629940352,
%U 32441861122796672,1079239231677587264,38151510015777089280,1428149538870997774080,56435732691153773665280
%N Number of zero-one matrices with n ones and no zero rows or columns.
%C a(n) = (1/(4*n!)) * Sum_{r, s>=0} (r*s)_n / 2^(r+s), where (m)_n is the falling factorial m * (m-1) * ... * (m-n+1). [Maia and Mendez]
%D Georg Cantor, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, p. 435 (IV, 4. Mitteilungen zur Lehre vom Transfiniten, VIII Nr. 13), Springer, Berlin. [_Rainer Rosenthal_, Apr 10 2007]
%H Alois P. Heinz, <a href="/A101370/b101370.txt">Table of n, a(n) for n = 1..400</a>
%H P. J. Cameron, D. A. Gewurz and F. Merola, <a href="http://www.maths.qmw.ac.uk/~pjc/preprints/product.pdf">Product action</a>, Discrete Math., 308 (2008), 386-394.
%H Giulio Cerbai and Anders Claesson, <a href="https://arxiv.org/abs/2411.08426">Enumerative aspects of Caylerian polynomials</a>, arXiv:2411.08426 [math.CO], 2024. See pp. 3, 19.
%H M. Maia and M. Mendez, <a href="https://arxiv.org/abs/math/0503436">On the arithmetic product of combinatorial species</a>, arXiv:math/0503436 [math.CO], 2005.
%F a(n) = (Sum s(n, k) * P(k)^2)/n!, where P(n) is the number of labeled total preorders on {1, ..., n} (A000670), s are signed Stirling numbers of the first kind.
%F G.f.: Sum_{m>=0,n>=0} Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*((1+x)^j-1)^m. - _Vladeta Jovovic_, Mar 25 2006
%F Inverse binomial transform of A007322. - _Vladeta Jovovic_, Aug 17 2006
%F G.f.: Sum_{n>=0} 1/(2-(1+x)^n)/2^(n+1). - _Vladeta Jovovic_, Sep 23 2006
%F G.f.: Sum_{n>=0} A000670(n)^2*log(1+x)^n/n! where 1/(1-x) = Sum_{n>=0} A000670(n)*log(1+x)^n/n!. - _Paul D. Hanna_, Nov 07 2009
%F a(n) ~ n! / (2^(2+log(2)/2) * (log(2))^(2*(n+1))). - _Vaclav Kotesovec_, Dec 31 2013
%e a(2)=4:
%e [1 1] [1] [1 0] [0 1]
%e ..... [1] [0 1] [1 0]
%e From _Gus Wiseman_, Nov 14 2018: (Start)
%e The a(3) = 24 matrices:
%e [111]
%e .
%e [11][11][110][101][10][100][011][01][010][001]
%e [10][01][001][010][11][011][100][11][101][110]
%e .
%e [1][10][10][10][100][100][01][01][010][01][010][001][001]
%e [1][10][01][01][010][001][10][10][100][01][001][100][010]
%e [1][01][10][01][001][010][10][01][001][10][100][010][100]
%e (End)
%t m = 17; a670[n_] = Sum[ StirlingS2[n, k]*k!, {k, 0, n}]; Rest[ CoefficientList[ Series[ Sum[ a670[n]^2*(Log[1 + x]^n/n!), {n, 0, m}], {x, 0, m}], x]] (* _Jean-François Alcover_, Sep 02 2011, after g.f. *)
%t Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#]]&]],{n,5}] (* _Gus Wiseman_, Nov 14 2018 *)
%o (GAP) P:=function(n) return Sum([1..n],x->Stirling2(n,x)*Factorial(x)); end;
%o (GAP) F:=function(n) return Sum([1..n],x->(-1)^(n-x)*Stirling1(n,x)*P(x)^2)/Factorial(n); end;
%o (PARI) {A000670(n)=sum(k=0,n,stirling(n, k,2)*k!)}
%o {a(n)=polcoeff(sum(m=0,n,A000670(m)^2*log(1+x+x*O(x^n))^m/m!),n)}
%o /* _Paul D. Hanna_, Nov 07 2009 */
%Y Cf. A000670 (the sequence P(n)), A049311 (row and column permutations allowed), A120733, A122725, A135589, A283877, A321446, A321587.
%K easy,nonn
%O 1,2
%A _Peter J. Cameron_, Jan 14 2005