login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = ceiling((3-sqrt(3))*4^(n-3)) + 1.
0

%I #10 Jan 21 2019 19:01:55

%S 2,2,2,3,7,22,83,326,1300,5195,20776,83098,332387,1329543,5318166,

%T 21272659,85090631,340362521,1361450080,5445800316,21783201259,

%U 87132805033,348531220128,1394124880509,5576499522030,22305998088117

%N a(n) = ceiling((3-sqrt(3))*4^(n-3)) + 1.

%C Essentially the same as A094062: a(n) = A094062(n) for n>=2.

%C An approximation to the Camel Problem.

%p Digits:=100;seq(ceil((3-sqrt(3))*4^(n-3)) + 1,n=0..30);

%t With[{c=3-Sqrt[3]},Ceiling[c*4^Range[-3,30]]+1] (* _Harvey P. Dale_, Jan 27 2013 *)

%Y Cf. A094062.

%K nonn

%O 0,1

%A _Jorge Coveiro_, Dec 25 2004