login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101338
Antidiagonal sums in A101321.
3
1, 2, 4, 9, 20, 41, 77, 134, 219, 340, 506, 727, 1014, 1379, 1835, 2396, 3077, 3894, 4864, 6005, 7336, 8877, 10649, 12674, 14975, 17576, 20502, 23779, 27434, 31495, 35991, 40952, 46409, 52394, 58940, 66081, 73852, 82289, 91429, 101310, 111971
OFFSET
0,2
COMMENTS
Equals binomial transform of [1, 1, 1, 2, 1, 0, 0, 0, ...]. Example: a(5) = 20 = [1, 1, 1, 2, 1] dot [1, 4, 6, 4, 1] = (1 + 4 + 6 + 8 + 1). - Gary W. Adamson, Aug 25 2010
FORMULA
a(n) = n^4/24 + n^3/12 - n^2/24 + 11*n/12 + 1.
G.f.: (1-3*x+4*x^2-x^3)/(1-x)^5. - Colin Barker, Mar 22 2012
a(0)=1, a(1)=2, a(2)=4, a(3)=9, a(4)=20, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, May 21 2013
a(n) = A000127(n+1) + A000292(n-2). - Bruce J. Nicholson, Jan 06 2019
MATHEMATICA
CoefficientList[Series[(1-3*x+4*x^2-x^3)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2012 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 2, 4, 9, 20}, 50] (* Harvey P. Dale, May 21 2013 *)
CROSSREFS
Sequence in context: A053024 A240047 A090166 * A018102 A018103 A350092
KEYWORD
nonn,easy
AUTHOR
Eugene McDonnell (eemcd(AT)mac.com), Dec 24 2004
STATUS
approved