login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n, n <= 6; a(n) = 6, n > 6.
4

%I #28 Nov 01 2024 12:06:00

%S 1,2,3,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,

%T 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,

%U 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6

%N a(n) = n, n <= 6; a(n) = 6, n > 6.

%C Sequence of electron arrangements in the 2p, 3p, 4p and 5p atomic subshells.

%C Decimal expansion of 37037/30000. - _Elmo R. Oliveira_, May 07 2024

%D A. Beiser, Concepts of Modern Physics, 2nd Ed., McGraw-Hill, 1973.

%D R. M. Tennent (Editor), Science Data Book, Oliver & Boyd, 1971.

%H Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, <a href="https://ceur-ws.org/Vol-3792/paper19.pdf">Integer sequences from k-iterated line digraphs</a>, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2.

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).

%F a(n) = n, n <= 6; a(n) = 6, n > 6.

%F Euler transform of length 6 sequence [ 2, 0, 0, 0, 0, -1]. - _Michael Somos_, Aug 31 2006

%F G.f.: (1-x^6)/(1-x)^2. - _Michael Somos_, Aug 31 2006

%F a(n) = min(n,6). - _Wesley Ivan Hurt_, Apr 16 2014

%F G.f.: x*(1+x+x^2+x^3+x^4+x^5)/(1-x). - _Elmo R. Oliveira_, Jun 20 2024

%t Table[Min[n,6],{n,120}] (* _Harvey P. Dale_, Mar 09 2014 *)

%o (PARI) a(n)=min(6,n) /* _Michael Somos_, Aug 31 2006, edited by _M. F. Hasler_, Apr 16 2014 */

%Y Cf. A040000.

%K easy,nonn

%O 1,2

%A _Jeremy Gardiner_, Dec 19 2004